Suppr超能文献

利用形态特征对 Akkaraman 绵羊活重进行预测的收缩和基于树的回归方法。

Shrinkage and tree-based regression methods for the prediction of the live weight of Akkaraman sheep using morphological traits.

机构信息

Gulhane Faculty of Medicine, Department of Medical Informatics, University of Health Sciences, Ankara, 06018, Türkiye.

Faculty of Veterinary Medicine, Department of Biostatistics, Ankara University, Ankara, 06070, Türkiye.

出版信息

Trop Anim Health Prod. 2024 Oct 15;56(8):346. doi: 10.1007/s11250-024-04187-5.

Abstract

The prediction of live weight (LW) is of critical importance to farmers in a range of applications, including breeding and monitoring animal growth. In this context, Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), and Elastic Net as shrinkage methods, and Classification and Regression Trees (CART) and Random Forest (RF) as tree-based regression methods were used in this study to predict LW of Akkaraman Sheep at 6-month age using sex, birth weight (BW) and some morphological traits such as withers height (WH), chest depth (CD), body length (BL), chest width (CW), rump height (RH), and chest circumference (CC). The dataset of 100 sheep, consisting of 44 males and 56 females, was randomly divided into training and test sets with a ratio of 80% and 20%, respectively. 10-fold cross-validation method was implemented using the training set to obtain optimum regression models and avoid overfitting. A test set was used to compare the prediction performance of regression methods based on various comparison criteria. Results revealed that LW was significantly correlated with all morphological traits and BW with coefficients ranging from 0.216 to 0.757. RF outperformed the other regression models with a coefficient of determination value (R) of 0.865, followed by Ridge (R = 0.761), LASSO (R = 0.755), Elastic Net (R = 0.750), and CART (R = 0.654). The results indicated that WH and CD contributed the most, while sex and BW contributed the least in constructing the optimum RF model. In conclusion, the use of RF is recommended for predicting the LW of Akkaraman sheep. These results can provide a data-driven approach to improve decision-making in animal breeding.

摘要

活重(LW)的预测对农民来说至关重要,其应用范围广泛,包括繁殖和监测动物生长。在这种情况下,本研究使用岭回归、最小绝对值收缩和选择算子(LASSO)以及弹性网络作为收缩方法,以及分类和回归树(CART)和随机森林(RF)作为基于树的回归方法,使用性别、初生重(BW)和一些形态特征(如肩高(WH)、胸深(CD)、体长(BL)、胸宽(CW)、臀高(RH)和胸围(CC))预测 6 月龄 Akkaraman 绵羊的 LW。数据集由 100 只绵羊组成,包括 44 只雄性和 56 只雌性,随机分为训练集和测试集,比例分别为 80%和 20%。使用训练集实施 10 折交叉验证方法以获得最佳回归模型并避免过度拟合。使用测试集基于各种比较标准比较回归方法的预测性能。结果表明,LW 与所有形态特征和 BW 显著相关,相关系数范围为 0.216 至 0.757。RF 的决定系数(R)值为 0.865,优于其他回归模型,其次是岭回归(R=0.761)、LASSO(R=0.755)、弹性网络(R=0.750)和 CART(R=0.654)。结果表明,WH 和 CD 贡献最大,而性别和 BW 贡献最小,构建最佳 RF 模型。总之,建议使用 RF 预测 Akkaraman 绵羊的 LW。这些结果可以为动物繁殖中的决策提供数据驱动的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验