Suppr超能文献

使用机器学习算法从断奶前的生物特征测量预测罗曼诺夫羔羊的断奶体重

Predicting Weaning Weight of Romanov Lambs From Biometric Measurements Before Weaning Age Using Machine Learning Algorithms.

作者信息

Eroğlu Mehmet, Turgut Ali Osman, Küçük Mürsel, Önen Muhammed Furkan

机构信息

Department of Animal Science, Faculty of Veterinary Medicine, Siirt University, Siirt, Türkiye.

出版信息

Vet Med Sci. 2025 Jul;11(4):e70420. doi: 10.1002/vms3.70420.

Abstract

BACKGROUND

Machine learning systems learn from historical data to forecast future outcomes. In the context of livestock farming, machine learning can be utilized to predict variables such as growth rates, milk production and breeding success by analysing data related to animal health, nutrition and environmental conditions.

OBJECTIVE

This study aimed to investigate the performance of different machine learning algorithms in predicting weaning weight based on biometric measurements of Romanov lambs at 30 days of age.

METHODS

The biometric traits of the lambs, including body length (BL), chest circumference (CC), chest depth (CD), chest width (CH), withers height (WH), rump height (RH), rump width (RW) and sex were used to construct predictive models. The study employed random forest (RF), classification and regression trees (CART), gradient boosting (GB), eXtreme gradient boosting (XGBoost) and CatBoost algorithms. The data was standardized to eliminate scale differences and divided into training (80%) and test (20%) sets. GridSearchCV was utilized for hyperparameter optimization. The performance of the models was evaluated using various goodness-of-fit metrics, including RMSE, MAE, R, MAPE, RAE, MAD and SD ratio.

RESULTS

The gradient boosting and XGBoost models performed the highest R values and the lowest RMSE, MAE and MAPE values in the test data. In contrast, the random forest and CatBoost models showed lower predictive performance, with higher errors in the test data.

CONCLUSION

The study suggests that machine learning algorithms, particularly gradient boosting and XGBoost, show promising potential in predicting the weaning weight of lambs. These insights may facilitate more informed decision-making in animal breeding and selection, potentially contributing to enhanced livestock management practices.

摘要

背景

机器学习系统从历史数据中学习以预测未来结果。在畜牧业背景下,机器学习可通过分析与动物健康、营养和环境条件相关的数据来预测诸如生长率、产奶量和繁殖成功率等变量。

目的

本研究旨在基于罗曼诺夫羔羊30日龄时的生物特征测量,调查不同机器学习算法在预测断奶体重方面的性能。

方法

羔羊的生物特征,包括体长(BL)、胸围(CC)、胸深(CD)、胸宽(CH)、鬐甲高(WH)、臀高(RH)、臀宽(RW)和性别,被用于构建预测模型。该研究采用了随机森林(RF)、分类与回归树(CART)、梯度提升(GB)、极端梯度提升(XGBoost)和CatBoost算法。数据进行了标准化以消除尺度差异,并分为训练集(80%)和测试集(20%)。使用GridSearchCV进行超参数优化。使用各种拟合优度指标评估模型性能,包括均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R)、平均绝对百分比误差(MAPE)、相对绝对误差(RAE)、平均绝对偏差(MAD)和标准差比(SD ratio)。

结果

梯度提升和XGBoost模型在测试数据中表现出最高的R值以及最低的RMSE、MAE和MAPE值。相比之下,随机森林和CatBoost模型的预测性能较低,在测试数据中的误差较高。

结论

该研究表明,机器学习算法,特别是梯度提升和XGBoost,在预测羔羊断奶体重方面显示出有前景的潜力。这些见解可能有助于在动物育种和选择中做出更明智的决策,潜在地有助于加强畜牧管理实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74b2/12118501/4aeed123cca8/VMS3-11-e70420-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验