Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India.
Biofabrication. 2024 Oct 24;17(1). doi: 10.1088/1758-5090/ad86ec.
In the realm of tissue engineering, replicating the intricate alignment of cells and the extracellular matrix (ECM) found in native tissue has long been a challenge. Most recent studies have relied on complex multi-step processes to approximate native tissue alignment. To address this challenge, we introduce a novel, single-step method for constructing highly aligned fibrous structures within multi-modular three-dimensional conglomerates. Our approach harnesses the synergistic potential of extrusion-based bioprinting and the fibrillogenesis kinetics of collagen-rich decellularized ECM. We have identified three key parameters governing ECM microfiber alignment during extrusion-based bioprinting: applied shear stress, stretching or extensional force, and post-print deformation. By carefully manipulating these parameters, we have successfully created highly aligned fibrous structures within multi-modular three-dimensional conglomerates. Our technique offers an efficient solution and has been validated by computational modeling. Comprehensive analyses confirm the efficacy across various scenarios, including encapsulated, top-seeded, and migratory cells. Notably, we have demonstrated the versatility and effectiveness of our approach by bioprinting highly aligned cardiac tissue patches, which show further maturation evidenced by the expression of Troponin-T and Myo-D differentiation factor needed for contractility and myotube formation, respectively. In summary, our streamlined approach offers a robust solution for creating anisotropic tissue analogues with precise ECM organization.
在组织工程领域,复制天然组织中细胞和细胞外基质(ECM)的复杂排列一直是一个挑战。最近的大多数研究都依赖于复杂的多步过程来模拟天然组织的排列。为了解决这一挑战,我们引入了一种新颖的、单一步骤的方法,用于在多模块三维聚集体中构建高度排列的纤维结构。我们的方法利用了基于挤出的生物打印和富含胶原蛋白的去细胞 ECM 的纤维发生动力学的协同潜力。我们已经确定了在基于挤出的生物打印过程中控制 ECM 微纤维排列的三个关键参数:施加的剪切应力、拉伸或拉伸力以及打印后的变形。通过仔细操纵这些参数,我们已经成功地在多模块三维聚集体中创建了高度排列的纤维结构。我们的技术提供了一种有效的解决方案,并通过计算建模进行了验证。全面的分析证实了该技术在各种情况下的有效性,包括封装、顶部播种和迁移细胞。值得注意的是,我们通过生物打印高度排列的心脏组织贴片展示了我们方法的多功能性和有效性,这些贴片进一步成熟的证据是肌钙蛋白-T 和肌球蛋白-D 分化因子的表达,分别需要用于收缩性和肌管形成的肌球蛋白-D 分化因子。总之,我们简化的方法为创建具有精确 ECM 组织的各向异性组织模拟物提供了一个强大的解决方案。