Suppr超能文献

自适应实验室进化利用琥珀酸半醛脱氢酶的多功能性来修复不同的代谢缺陷。

Adaptive laboratory evolution recruits the promiscuity of succinate semialdehyde dehydrogenase to repair different metabolic deficiencies.

机构信息

Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

出版信息

Nat Commun. 2024 Oct 15;15(1):8898. doi: 10.1038/s41467-024-53156-x.

Abstract

Promiscuous enzymes often serve as the starting point for the evolution of novel functions. Yet, the extent to which the promiscuity of an individual enzyme can be harnessed several times independently for different purposes during evolution is poorly reported. Here, we present a case study illustrating how NAD(P)-dependent succinate semialdehyde dehydrogenase of Escherichia coli (Sad) is independently recruited through various evolutionary mechanisms for distinct metabolic demands, in particular vitamin biosynthesis and central carbon metabolism. Using adaptive laboratory evolution (ALE), we show that Sad can substitute for the roles of erythrose 4-phosphate dehydrogenase in pyridoxal 5'-phosphate (PLP) biosynthesis and glyceraldehyde 3-phosphate dehydrogenase in glycolysis. To recruit Sad for PLP biosynthesis and glycolysis, ALE employs various mechanisms, including active site mutation, copy number amplification, and (de)regulation of gene expression. Our study traces down these different evolutionary trajectories, reports on the surprising active site plasticity of Sad, identifies regulatory links in amino acid metabolism, and highlights the potential of an ordinary enzyme as innovation reservoir for evolution.

摘要

杂乱无章的酶通常是新功能进化的起点。然而,在进化过程中,一个酶的杂乱无章可以独立地被多次利用来满足不同的目的,这一程度在很大程度上没有得到报道。在这里,我们提出了一个案例研究,说明了大肠杆菌(Escherichia coli)中 NAD(P)-依赖性琥珀酸半醛脱氢酶(Sad)如何通过各种进化机制独立地被招募,以满足不同的代谢需求,特别是维生素生物合成和中心碳代谢的需求。我们使用适应性实验室进化(Adaptive Laboratory Evolution,ALE)表明,Sad 可以替代磷酸吡哆醛(PLP)生物合成中的赤藓糖 4-磷酸脱氢酶和糖酵解中的甘油醛 3-磷酸脱氢酶的作用。为了招募 Sad 参与 PLP 生物合成和糖酵解,ALE 采用了各种机制,包括活性位点突变、拷贝数扩增和基因表达的(去)调节。我们的研究追踪了这些不同的进化轨迹,报告了 Sad 的惊人的活性位点可塑性,确定了氨基酸代谢中的调节关系,并强调了普通酶作为进化创新库的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa71/11480449/0831114b5c13/41467_2024_53156_Fig3_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验