Lin Yung-Hao, Lou Junzhe, Xia Yan, Chaudhuri Ovijit
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA.
Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA.
Adv Healthc Mater. 2024 Dec;13(30):e2402059. doi: 10.1002/adhm.202402059. Epub 2024 Oct 15.
Dynamic covalent cross-linked (DCC) hydrogels represent a significant advance in biomaterials for regenerative medicine and mechanobiology, offering viscoelasticity, and self-healing properties that more closely mimic in vivo tissue mechanics than traditional, predominantly elastic, covalent hydrogels. However, the effects of varying cross-linker architecture on DCC hydrogel viscoelasticity have not been thoroughly investigated. This study introduces hydrazone-based alginate hydrogels to explore how cross-linker architectures impact stiffness and viscoelasticity. In hydrogels with side-chain cross-linker (SCX), higher cross-linker concentrations enhance stiffness and decelerate stress relaxation, while an off-stoichiometric hydrazine-to-aldehyde ratio reduces stiffness and shortens relaxation time. In hydrogels with telechelic cross-linking, maximal stiffness and relaxation time occurs at intermediate cross-linker mixing ratio for both linear cross-linker (LX) and star cross-linker (SX), with higher cross-linker valency further enhancing these properties. Further, the ranges of stiffness and viscoelasticity accessible with the different cross-linker architectures are found to be distinct, with SCX hydrogels leading to slower stress relaxation relative to the other architectures, and SX hydrogels providing increased stiffness and slower stress relaxation versus LX hydrogels. This research underscores the pivotal role of cross-linker architecture in defining hydrogel stiffness and viscoelasticity, providing insights for designing DCC hydrogels with tailored mechanical properties for specific biomedical applications.
动态共价交联(DCC)水凝胶是再生医学和力学生物学领域生物材料的一项重大进展,它具有粘弹性和自愈特性,比传统的、主要为弹性的共价水凝胶更能紧密模拟体内组织力学。然而,不同交联剂结构对DCC水凝胶粘弹性的影响尚未得到充分研究。本研究引入腙基海藻酸盐水凝胶,以探索交联剂结构如何影响硬度和粘弹性。在具有侧链交联剂(SCX)的水凝胶中,较高的交联剂浓度会增强硬度并减缓应力松弛,而非化学计量的肼与醛比例会降低硬度并缩短松弛时间。在具有遥爪交联的水凝胶中,对于线性交联剂(LX)和星形交联剂(SX),最大硬度和松弛时间出现在中间交联剂混合比例下,交联剂价数越高,这些特性进一步增强。此外,发现不同交联剂结构可实现的硬度和粘弹性范围是不同的,与其他结构相比,SCX水凝胶导致应力松弛更慢,与LX水凝胶相比,SX水凝胶提供更高的硬度和更慢的应力松弛。这项研究强调了交联剂结构在定义水凝胶硬度和粘弹性方面的关键作用,为设计具有特定生物医学应用所需定制机械性能的DCC水凝胶提供了见解。