Suppr超能文献

交联剂结构影响动态共价水凝胶的粘弹性。

Cross-Linker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels.

作者信息

Lin Yung-Hao, Lou Junzhe, Xia Yan, Chaudhuri Ovijit

机构信息

Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA.

Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA.

出版信息

Adv Healthc Mater. 2024 Dec;13(30):e2402059. doi: 10.1002/adhm.202402059. Epub 2024 Oct 15.

Abstract

Dynamic covalent cross-linked (DCC) hydrogels represent a significant advance in biomaterials for regenerative medicine and mechanobiology, offering viscoelasticity, and self-healing properties that more closely mimic in vivo tissue mechanics than traditional, predominantly elastic, covalent hydrogels. However, the effects of varying cross-linker architecture on DCC hydrogel viscoelasticity have not been thoroughly investigated. This study introduces hydrazone-based alginate hydrogels to explore how cross-linker architectures impact stiffness and viscoelasticity. In hydrogels with side-chain cross-linker (SCX), higher cross-linker concentrations enhance stiffness and decelerate stress relaxation, while an off-stoichiometric hydrazine-to-aldehyde ratio reduces stiffness and shortens relaxation time. In hydrogels with telechelic cross-linking, maximal stiffness and relaxation time occurs at intermediate cross-linker mixing ratio for both linear cross-linker (LX) and star cross-linker (SX), with higher cross-linker valency further enhancing these properties. Further, the ranges of stiffness and viscoelasticity accessible with the different cross-linker architectures are found to be distinct, with SCX hydrogels leading to slower stress relaxation relative to the other architectures, and SX hydrogels providing increased stiffness and slower stress relaxation versus LX hydrogels. This research underscores the pivotal role of cross-linker architecture in defining hydrogel stiffness and viscoelasticity, providing insights for designing DCC hydrogels with tailored mechanical properties for specific biomedical applications.

摘要

动态共价交联(DCC)水凝胶是再生医学和力学生物学领域生物材料的一项重大进展,它具有粘弹性和自愈特性,比传统的、主要为弹性的共价水凝胶更能紧密模拟体内组织力学。然而,不同交联剂结构对DCC水凝胶粘弹性的影响尚未得到充分研究。本研究引入腙基海藻酸盐水凝胶,以探索交联剂结构如何影响硬度和粘弹性。在具有侧链交联剂(SCX)的水凝胶中,较高的交联剂浓度会增强硬度并减缓应力松弛,而非化学计量的肼与醛比例会降低硬度并缩短松弛时间。在具有遥爪交联的水凝胶中,对于线性交联剂(LX)和星形交联剂(SX),最大硬度和松弛时间出现在中间交联剂混合比例下,交联剂价数越高,这些特性进一步增强。此外,发现不同交联剂结构可实现的硬度和粘弹性范围是不同的,与其他结构相比,SCX水凝胶导致应力松弛更慢,与LX水凝胶相比,SX水凝胶提供更高的硬度和更慢的应力松弛。这项研究强调了交联剂结构在定义水凝胶硬度和粘弹性方面的关键作用,为设计具有特定生物医学应用所需定制机械性能的DCC水凝胶提供了见解。

相似文献

1
Cross-Linker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels.
Adv Healthc Mater. 2024 Dec;13(30):e2402059. doi: 10.1002/adhm.202402059. Epub 2024 Oct 15.
2
Crosslinker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels.
bioRxiv. 2024 Jun 4:2024.05.07.593040. doi: 10.1101/2024.05.07.593040.
3
Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels.
Biomaterials. 2019 Jan;188:187-197. doi: 10.1016/j.biomaterials.2018.10.013. Epub 2018 Oct 12.
4
Tunable Viscoelasticity of Alginate Hydrogels via Serial Autoclaving.
Adv Healthc Mater. 2024 Dec;13(32):e2401550. doi: 10.1002/adhm.202401550. Epub 2024 Jul 29.
5
Schiff base crosslinked hyaluronic acid hydrogels with tunable and cell instructive time-dependent mechanical properties.
Carbohydr Polym. 2024 Aug 15;338:122173. doi: 10.1016/j.carbpol.2024.122173. Epub 2024 Apr 17.
6
Viscoelastic hydrogels regulate adipose-derived mesenchymal stem cells for nucleus pulposus regeneration.
Acta Biomater. 2024 May;180:244-261. doi: 10.1016/j.actbio.2024.04.017. Epub 2024 Apr 12.
7
Oxime Cross-Linked Alginate Hydrogels with Tunable Stress Relaxation.
Biomacromolecules. 2019 Dec 9;20(12):4419-4429. doi: 10.1021/acs.biomac.9b01100. Epub 2019 Nov 4.
8
Hydrazone covalent adaptable networks modulate extracellular matrix deposition for cartilage tissue engineering.
Acta Biomater. 2019 Jan 1;83:71-82. doi: 10.1016/j.actbio.2018.11.014. Epub 2018 Nov 10.
10
3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.
J Mech Behav Biomed Mater. 2017 Jun;70:84-94. doi: 10.1016/j.jmbbm.2016.07.020. Epub 2016 Jul 22.

引用本文的文献

2
Catalyst-modulated hydrogel dynamics for decoupling viscoelasticity and directing macrophage fate for diabetic wound healing.
Bioact Mater. 2025 Jul 5;52:878-895. doi: 10.1016/j.bioactmat.2025.06.007. eCollection 2025 Oct.
4
Self-Healing Hydrogels: Mechanisms and Biomedical Applications.
MedComm (2020). 2025 Apr 24;6(5):e70181. doi: 10.1002/mco2.70181. eCollection 2025 May.

本文引用的文献

1
Cell volume expansion and local contractility drive collective invasion of the basement membrane in breast cancer.
Nat Mater. 2024 May;23(5):711-722. doi: 10.1038/s41563-023-01716-9. Epub 2023 Nov 13.
2
Tunable hydrogel viscoelasticity modulates human neural maturation.
Sci Adv. 2023 Oct 20;9(42):eadh8313. doi: 10.1126/sciadv.adh8313.
4
Design Parameters for Injectable Biopolymeric Hydrogels with Dynamic Covalent Chemistry Crosslinks.
Adv Healthc Mater. 2023 Oct;12(27):e2301265. doi: 10.1002/adhm.202301265. Epub 2023 Jul 11.
5
Generation of functionally distinct T-cell populations by altering the viscoelasticity of their extracellular matrix.
Nat Biomed Eng. 2023 Nov;7(11):1374-1391. doi: 10.1038/s41551-023-01052-y. Epub 2023 Jun 26.
6
Biomimetic strain-stiffening in fully synthetic dynamic-covalent hydrogel networks.
Chem Sci. 2023 Apr 13;14(18):4796-4805. doi: 10.1039/d3sc00011g. eCollection 2023 May 10.
7
Injectable, In Situ Self-cross-linking, Self-healing Poly(l-glutamic acid)/Polyethylene Glycol Hydrogels for Cartilage Tissue Engineering.
ACS Biomater Sci Eng. 2023 May 8;9(5):2625-2635. doi: 10.1021/acsbiomaterials.3c00041. Epub 2023 Apr 17.
8
3D bioprinting of dynamic hydrogel bioinks enabled by small molecule modulators.
Sci Adv. 2023 Mar 31;9(13):eade7880. doi: 10.1126/sciadv.ade7880.
9
Using Competitor Molecules to Reversibly Modulate the Mechanical Properties of Viscoelastic Hydrogels.
ACS Macro Lett. 2022 Nov 15;11(11):1312-1316. doi: 10.1021/acsmacrolett.2c00527. Epub 2022 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验