文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

水凝胶集成表面增强拉曼散射平台的进展:食品安全检测中的创新、应用、挑战及未来前景

Advances in Hydrogel-Integrated SERS Platforms: Innovations, Applications, Challenges, and Future Prospects in Food Safety Detection.

作者信息

Nunekpeku Xorlali, Li Huanhuan, Zahid Ayesha, Li Chenhui, Zhang Wei

机构信息

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.

出版信息

Biosensors (Basel). 2025 Jun 5;15(6):363. doi: 10.3390/bios15060363.


DOI:10.3390/bios15060363
PMID:40558445
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12190936/
Abstract

: Food safety remains a global concern due to biological and chemical contaminants, including adulterants, pathogens, antibiotic residues, and pesticides. Traditional detection methods are accurate but limited by time requirements, complex sample preparation, high costs, and poor field applicability. Surface-Enhanced Raman Spectroscopy (SERS) offers non-destructive analysis with low detection limits and high specificity, yet conventional SERS substrates face challenges with reproducibility, nanoparticle aggregation, and sensitivity in food matrices. Hydrogels have emerged as supporting materials for SERS due to their water content, tunable porosity, flexibility, and ability to entrap plasmonic nanostructures. : This review examines recent advances in hydrogel-integrated SERS platforms for food safety applications. The three-dimensional structure of hydrogels enables homogeneous distribution of metal nanoparticles, prevents aggregation, and offers analyte enrichment. We analyze material design, functionalization strategies, and how hydrogel properties-crosslinking density, porosity, surface charge, and nanoparticle distribution-influence SERS performance in food matrices. : Hydrogel-integrated SERS platforms demonstrate superior performance in detecting various food contaminants-including pesticides, adulterants, and additives-in real food matrices, often achieving detection limits in the nanomolar to picomolar range, depending on the analyte and substrate design. Current limitations include storage stability concerns, batch-to-batch variability, and regulatory acceptance hurdles. Future research directions should focus on multiplex detection capabilities, integration with smart sensing technologies, and industrial scalability to facilitate practical deployment in global food safety monitoring across diverse supply chains.

摘要

由于生物和化学污染物,包括掺假物、病原体、抗生素残留和农药,食品安全仍然是一个全球关注的问题。传统的检测方法准确,但受时间要求、复杂的样品制备、高成本和较差的现场适用性限制。表面增强拉曼光谱(SERS)提供了具有低检测限和高特异性的无损分析,但传统的SERS基底在食品基质中的重现性、纳米颗粒聚集和灵敏度方面面临挑战。水凝胶因其含水量、可调孔隙率、柔韧性以及捕获等离子体纳米结构的能力,已成为SERS的支撑材料。 本综述探讨了用于食品安全应用的水凝胶集成SERS平台的最新进展。水凝胶的三维结构使金属纳米颗粒能够均匀分布,防止聚集,并提供分析物富集。我们分析了材料设计、功能化策略,以及水凝胶特性(交联密度、孔隙率、表面电荷和纳米颗粒分布)如何影响食品基质中的SERS性能。 水凝胶集成SERS平台在检测实际食品基质中的各种食品污染物(包括农药、掺假物和添加剂)方面表现出卓越的性能,根据分析物和基底设计,通常实现纳摩尔到皮摩尔范围内的检测限。当前的局限性包括储存稳定性问题、批次间的变异性和监管接受障碍。未来的研究方向应集中在多重检测能力、与智能传感技术的集成以及工业可扩展性,以促进在全球不同供应链的食品安全监测中的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/f5ee8fa8e1d1/biosensors-15-00363-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/8dafc3179876/biosensors-15-00363-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/7437b8cc4391/biosensors-15-00363-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/34ed3e50c020/biosensors-15-00363-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/e8ab6165d1c6/biosensors-15-00363-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/2231a8c72869/biosensors-15-00363-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/5c4307dfec5c/biosensors-15-00363-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/f5ee8fa8e1d1/biosensors-15-00363-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/8dafc3179876/biosensors-15-00363-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/7437b8cc4391/biosensors-15-00363-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/34ed3e50c020/biosensors-15-00363-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/e8ab6165d1c6/biosensors-15-00363-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/2231a8c72869/biosensors-15-00363-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/5c4307dfec5c/biosensors-15-00363-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/12190936/f5ee8fa8e1d1/biosensors-15-00363-g001.jpg

相似文献

[1]
Advances in Hydrogel-Integrated SERS Platforms: Innovations, Applications, Challenges, and Future Prospects in Food Safety Detection.

Biosensors (Basel). 2025-6-5

[2]
Recent advances in the design of SERS substrates and sensing systems for (bio)sensing applications: Systems from single cell to single molecule detection.

F1000Res. 2025-3-18

[3]
Large-Area Nanogap Platforms for Surface-Enhanced Raman Spectroscopy Toward Sensing Applications: Comparison Between Ag and Au.

Biosensors (Basel). 2025-6-9

[4]
Au-Ag Bimetallic Nanoparticles for Surface-Enhanced Raman Scattering (SERS) Detection of Food Contaminants: A Review.

Foods. 2025-6-16

[5]
Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges.

ACS Appl Mater Interfaces. 2025-3-19

[6]
Surface-Enhanced Raman Scattering Nanotags: Design Strategies, Biomedical Applications, and Integration of Machine Learning.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025

[7]
Recent Progress on the Application of Microneedles for In Situ Sampling in Surface-Enhanced Raman Scattering Detection.

Biosensors (Basel). 2025-6-1

[8]
Recent advances in surface enhanced Raman spectroscopy for bacterial pathogen identifications.

J Adv Res. 2023-9

[9]
Recent Advances in Functionalized Carbon Quantum Dots Integrated with Metal-Organic Frameworks: Emerging Platforms for Sensing and Food Safety Applications.

Foods. 2025-6-11

[10]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

引用本文的文献

[1]
Dual-plasmonic metals functionalized MXene synergistic enhanced SERS biosensor for sensitive and selective detection of S. aureus in milk.

Mikrochim Acta. 2025-8-25

本文引用的文献

[1]
Interpenetrating network hydrogels loaded with nanostructured lipid carriers for curcumin delivery: Impact of dual crosslinking with genipin and calcium ions.

Food Res Int. 2025-2

[2]
Three-Dimensional SERS-Active Hydrogel Microbeads Enable Highly Sensitive Homogeneous Phase Detection of Alkaline Phosphatase in Biosystems.

ACS Appl Mater Interfaces. 2025-1-29

[3]
A Comprehensive Review of Multifunctional Nanozymes for Degradation and Detection of Organophosphorus Pesticides in the Environment.

Toxics. 2024-12-20

[4]
Innovative bioinspired hydrogel scaffolds enabling in-situ hybrid nanoflower integration for dual-mode acetylcholinesterase inhibitor profiling.

Biosens Bioelectron. 2025-3-1

[5]
Surface-Enhanced Raman Scattering-Based Multimodal Techniques: Advances and Perspectives.

ACS Nano. 2024-11-26

[6]
Raspberry-Like Plasmonic Nanoaggregates with Programmable Hierarchical Structures for Reproducible SERS Detection of Wastewater Pollutants and Biomarkers.

Anal Chem. 2024-11-5

[7]
Cross-Linker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels.

Adv Healthc Mater. 2024-12

[8]
Hydrophilic-Hydrophobic Network Hydrogels Achieving Optimal Strength and Hysteresis Balance.

ACS Appl Mater Interfaces. 2024-10-23

[9]
Ultrasensitive Analysis of O157:H7 Based on Immunomagnetic Separation and Labeled Surface-Enhanced Raman Scattering with Minimized False Positive Identifications.

J Agric Food Chem. 2024-10-9

[10]
Advancements in SERS based systematic evolution of ligands by exponential enrichment for detection of pesticide residues in fruits and vegetables.

Food Chem. 2025-1-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索