Nunekpeku Xorlali, Li Huanhuan, Zahid Ayesha, Li Chenhui, Zhang Wei
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
Biosensors (Basel). 2025 Jun 5;15(6):363. doi: 10.3390/bios15060363.
: Food safety remains a global concern due to biological and chemical contaminants, including adulterants, pathogens, antibiotic residues, and pesticides. Traditional detection methods are accurate but limited by time requirements, complex sample preparation, high costs, and poor field applicability. Surface-Enhanced Raman Spectroscopy (SERS) offers non-destructive analysis with low detection limits and high specificity, yet conventional SERS substrates face challenges with reproducibility, nanoparticle aggregation, and sensitivity in food matrices. Hydrogels have emerged as supporting materials for SERS due to their water content, tunable porosity, flexibility, and ability to entrap plasmonic nanostructures. : This review examines recent advances in hydrogel-integrated SERS platforms for food safety applications. The three-dimensional structure of hydrogels enables homogeneous distribution of metal nanoparticles, prevents aggregation, and offers analyte enrichment. We analyze material design, functionalization strategies, and how hydrogel properties-crosslinking density, porosity, surface charge, and nanoparticle distribution-influence SERS performance in food matrices. : Hydrogel-integrated SERS platforms demonstrate superior performance in detecting various food contaminants-including pesticides, adulterants, and additives-in real food matrices, often achieving detection limits in the nanomolar to picomolar range, depending on the analyte and substrate design. Current limitations include storage stability concerns, batch-to-batch variability, and regulatory acceptance hurdles. Future research directions should focus on multiplex detection capabilities, integration with smart sensing technologies, and industrial scalability to facilitate practical deployment in global food safety monitoring across diverse supply chains.
由于生物和化学污染物,包括掺假物、病原体、抗生素残留和农药,食品安全仍然是一个全球关注的问题。传统的检测方法准确,但受时间要求、复杂的样品制备、高成本和较差的现场适用性限制。表面增强拉曼光谱(SERS)提供了具有低检测限和高特异性的无损分析,但传统的SERS基底在食品基质中的重现性、纳米颗粒聚集和灵敏度方面面临挑战。水凝胶因其含水量、可调孔隙率、柔韧性以及捕获等离子体纳米结构的能力,已成为SERS的支撑材料。 本综述探讨了用于食品安全应用的水凝胶集成SERS平台的最新进展。水凝胶的三维结构使金属纳米颗粒能够均匀分布,防止聚集,并提供分析物富集。我们分析了材料设计、功能化策略,以及水凝胶特性(交联密度、孔隙率、表面电荷和纳米颗粒分布)如何影响食品基质中的SERS性能。 水凝胶集成SERS平台在检测实际食品基质中的各种食品污染物(包括农药、掺假物和添加剂)方面表现出卓越的性能,根据分析物和基底设计,通常实现纳摩尔到皮摩尔范围内的检测限。当前的局限性包括储存稳定性问题、批次间的变异性和监管接受障碍。未来的研究方向应集中在多重检测能力、与智能传感技术的集成以及工业可扩展性,以促进在全球不同供应链的食品安全监测中的实际应用。
ACS Appl Mater Interfaces. 2025-3-19
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025
Cochrane Database Syst Rev. 2017-12-22
ACS Appl Mater Interfaces. 2025-1-29
Adv Healthc Mater. 2024-12
ACS Appl Mater Interfaces. 2024-10-23