Suppr超能文献

动态交联聚乙二醇水凝胶揭示了粘弹性在调节 3D 环境中脑胶质瘤命运和药物反应中的关键作用。

Dynamically Crosslinked Poly(ethylene-glycol) Hydrogels Reveal a Critical Role of Viscoelasticity in Modulating Glioblastoma Fates and Drug Responses in 3D.

机构信息

Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.

Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.

出版信息

Adv Healthc Mater. 2023 Jan;12(1):e2202147. doi: 10.1002/adhm.202202147. Epub 2022 Nov 16.

Abstract

Glioblastoma multiforme (GBM) is the most prevalent and aggressive brain tumor in adults. Hydrogels have been employed as 3D in vitro culture models to elucidate how matrix cues such as stiffness and degradation drive GBM progression and drug responses. Recently, viscoelasticity has been identified as an important niche cue in regulating stem cell differentiation and morphogenesis in 3D. Brain is a viscoelastic tissue, yet how viscoelasticity modulates GBM fate and drug response remains largely unknown. Using dynamic hydrazone crosslinking chemistry, a poly(ethylene-glycol)-based hydrogel system with brain-mimicking stiffness and tunable stress relaxation is reported to interrogate the role of viscoelasticity on GBM fates in 3D. The hydrogel design allows tuning stress relaxation without changing stiffness, biochemical ligand density, or diffusion. The results reveal that increasing stress relaxation promotes invasive GBM behavior, such as cell spreading, migration, and GBM stem-like cell marker expression. Furthermore, increasing stress relaxation enhances GBM proliferation and drug sensitivity. Stress-relaxation induced changes on GBM fates and drug response are found to be mediated through the cytoskeleton and transient receptor potential vanilloid-type 4. These results highlight the importance of incorporating viscoelasticity into 3D in vitro GBM models and provide novel insights into how viscoelasticity modulates GBM cell fates.

摘要

多形性胶质母细胞瘤(GBM)是成人中最常见和侵袭性最强的脑肿瘤。水凝胶已被用作 3D 体外培养模型,以阐明基质线索(如刚度和降解)如何驱动 GBM 的进展和药物反应。最近,粘弹性已被确定为调节 3D 中干细胞分化和形态发生的重要生态位线索。大脑是一种粘弹性组织,但粘弹性如何调节 GBM 的命运和药物反应在很大程度上尚不清楚。本研究使用动态腙交联化学,报道了一种具有脑模拟刚度和可调应力松弛的聚(乙二醇)基水凝胶系统,用于研究粘弹性对 3D 中 GBM 命运的作用。水凝胶设计允许在不改变刚度、生化配体密度或扩散的情况下调整应力松弛。结果表明,增加应力松弛会促进侵袭性 GBM 行为,如细胞扩散、迁移和 GBM 干细胞样细胞标志物的表达。此外,增加应力松弛会增强 GBM 的增殖和药物敏感性。研究发现,应力松弛诱导的 GBM 命运和药物反应的变化是通过细胞骨架和瞬时受体电位香草素 4 介导的。这些结果强调了将粘弹性纳入 3D 体外 GBM 模型的重要性,并为粘弹性如何调节 GBM 细胞命运提供了新的见解。

相似文献

3
Matrix Stiffness Modulates Patient-Derived Glioblastoma Cell Fates in Three-Dimensional Hydrogels.
Tissue Eng Part A. 2021 Mar;27(5-6):390-401. doi: 10.1089/ten.TEA.2020.0110. Epub 2020 Nov 6.
4
Effect of matrix metalloproteinase-mediated matrix degradation on glioblastoma cell behavior in 3D PEG-based hydrogels.
J Biomed Mater Res A. 2017 Mar;105(3):770-778. doi: 10.1002/jbm.a.35947. Epub 2016 Nov 18.
5
Gradient hydrogels for screening stiffness effects on patient-derived glioblastoma xenograft cellfates in 3D.
J Biomed Mater Res A. 2021 Jun;109(6):1027-1035. doi: 10.1002/jbm.a.37093. Epub 2020 Sep 21.
6
Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels.
Acta Biomater. 2023 Jun;163:400-414. doi: 10.1016/j.actbio.2022.05.048. Epub 2022 Jun 1.
7
Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids.
Acta Biomater. 2024 Mar 15;177:203-215. doi: 10.1016/j.actbio.2024.02.010. Epub 2024 Feb 12.
8
9
Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids.
Acta Biomater. 2021 Sep 15;132:437-447. doi: 10.1016/j.actbio.2021.05.005. Epub 2021 May 16.

引用本文的文献

1
Development of a Hydrogel Platform with GBM and Microglia: A Potential Glioblastoma Tumor Model.
ACS Appl Bio Mater. 2025 Sep 15;8(9):7757-7770. doi: 10.1021/acsabm.5c00735. Epub 2025 Aug 25.
3
Advanced cell-adaptable hydrogels for bioprinting.
Bioact Mater. 2025 Aug 6;53:831-854. doi: 10.1016/j.bioactmat.2025.07.044. eCollection 2025 Nov.
4
Hydrogel microdroplet based glioblastoma drug screening platform.
bioRxiv. 2025 Jul 12:2025.07.08.663758. doi: 10.1101/2025.07.08.663758.
5
Extracellular Matrix Viscoelasticity: A Dynamic Regulator of Cellular Behavior.
Ann Biomed Eng. 2025 Jun 17. doi: 10.1007/s10439-025-03767-2.
7
8
Fast-Relaxing Hydrogels Promote Pancreatic Adenocarcinoma Cell Aggressiveness through Integrin β1 Signaling.
Biomacromolecules. 2025 Feb 10;26(2):1098-1110. doi: 10.1021/acs.biomac.4c01441. Epub 2025 Jan 22.
9
Cross-Linker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels.
Adv Healthc Mater. 2024 Dec;13(30):e2402059. doi: 10.1002/adhm.202402059. Epub 2024 Oct 15.
10
Research Progress in the Field of Tumor Model Construction Using Bioprinting: A Review.
Int J Nanomedicine. 2024 Jun 27;19:6547-6575. doi: 10.2147/IJN.S460387. eCollection 2024.

本文引用的文献

1
Viscoelasticity and Adhesion Signaling in Biomaterials Control Human Pluripotent Stem Cell Morphogenesis in 3D Culture.
Adv Mater. 2021 Oct;33(43):e2101966. doi: 10.1002/adma.202101966. Epub 2021 Sep 9.
2
Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance.
Pharmacol Res. 2021 Sep;171:105780. doi: 10.1016/j.phrs.2021.105780. Epub 2021 Jul 21.
3
TRP Channels in Brain Tumors.
Front Cell Dev Biol. 2021 Apr 13;9:617801. doi: 10.3389/fcell.2021.617801. eCollection 2021.
4
The adaptive transition of glioblastoma stem cells and its implications on treatments.
Signal Transduct Target Ther. 2021 Mar 23;6(1):124. doi: 10.1038/s41392-021-00491-w.
5
Channeling Force in the Brain: Mechanosensitive Ion Channels Choreograph Mechanics and Malignancies.
Trends Pharmacol Sci. 2021 May;42(5):367-384. doi: 10.1016/j.tips.2021.02.006. Epub 2021 Mar 19.
7
Effects of extracellular matrix viscoelasticity on cellular behaviour.
Nature. 2020 Aug;584(7822):535-546. doi: 10.1038/s41586-020-2612-2. Epub 2020 Aug 26.
9
Matrix Stiffness Modulates Patient-Derived Glioblastoma Cell Fates in Three-Dimensional Hydrogels.
Tissue Eng Part A. 2021 Mar;27(5-6):390-401. doi: 10.1089/ten.TEA.2020.0110. Epub 2020 Nov 6.
10
Increased Stiffness Inhibits Invadopodia Formation and Cell Migration in 3D.
Biophys J. 2020 Aug 18;119(4):726-736. doi: 10.1016/j.bpj.2020.07.003. Epub 2020 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验