Suppr超能文献

跨多尺度建模以设计用于可持续气体分离的生物聚合物膜:2 - 多尺度方法

Modelling Across Multiple Scales to Design Biopolymer Membranes for Sustainable Gas Separations: 2-Multiscale Approach.

作者信息

Papchenko Kseniya, Ricci Eleonora, De Angelis Maria Grazia

机构信息

Institute for Materials and Processes, School of Engineering, University of Edinburgh, Sanderson Building, Robert Stevenson Road, Edinburgh EH9 3FB, UK.

Department of Civil, Chemical Environmental and Materials Engineering, DICAM, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.

出版信息

Polymers (Basel). 2024 Sep 30;16(19):2776. doi: 10.3390/polym16192776.

Abstract

The majority of materials used for membrane-based separation of gas mixtures are non-renewable and non-biodegradable, and the assessment of alternative bio-based polymers requires expensive and time-consuming experimental campaigns. This effort can be reduced by adopting suitable modelling approaches. In this series of works, we propose various modelling approaches to assess the CO/CH separation performance of eight different copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV) using a limited amount of experimental data for model calibration. In part 1, we adopted a fully atomistic approach based on Molecular Dynamics (MD), while, in this work, we propose a multiscale methodology where a molecular description of the polymers is bridged to a macroscopic prediction of its gas sorption behaviour. PHBV structures were simulated using MD to obtain pressure-volume-temperature data, which were used to parametrise the Sanchez-Lacombe Equation of State. This, in turn, allows for the evaluation of the CO and CH solubility in the copolymers at various pressures and compositions with little computational effort, enabling the estimate of the sorption-based selectivity. The gas separation performance obtained with this multiscale technique was compared to results obtained with a fully atomistic model and experimental data. The solubility-selectivity for the CO/CH mixture is in reasonable agreement between the two models and the experimental data. The multiscale method presented is a time-efficient alternative to fully atomistic methods and detailed experimental campaigns and can accelerate the introduction of renewable materials in different applications.

摘要

用于基于膜的气体混合物分离的大多数材料都是不可再生且不可生物降解的,而评估替代的生物基聚合物需要进行昂贵且耗时的实验。通过采用合适的建模方法可以减少这种工作量。在这一系列工作中,我们提出了各种建模方法,利用有限的实验数据进行模型校准,来评估八种不同的3-羟基丁酸酯和3-羟基戊酸酯共聚物(PHBV)的CO/CH分离性能。在第一部分中,我们采用了基于分子动力学(MD)的全原子方法,而在这项工作中,我们提出了一种多尺度方法,其中聚合物的分子描述与对其气体吸附行为的宏观预测相衔接。使用MD模拟PHBV结构以获得压力-体积-温度数据,这些数据用于对桑切斯-拉康布状态方程进行参数化。这反过来又允许在几乎不进行计算的情况下评估共聚物在各种压力和组成下的CO和CH溶解度,从而能够估计基于吸附的选择性。将这种多尺度技术获得的气体分离性能与全原子模型获得的结果和实验数据进行了比较。两种模型和实验数据之间,CO/CH混合物的溶解度-选择性具有合理的一致性。所提出的多尺度方法是全原子方法和详细实验的一种省时替代方法,并且可以加速可再生材料在不同应用中的引入。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dd9/11478839/0a159813a494/polymers-16-02776-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验