Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Engineering Technology Research Center of Fujian Special Crop Breeding and Utilization, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Int J Mol Sci. 2024 Sep 27;25(19):10409. doi: 10.3390/ijms251910409.
Decreasing nitrogen (N) supply affected the normal growth of () seedlings, reducing CO assimilation, stomatal conductance (gs), the contents of chlorophylls (Chl) and the ratio of Chl /Chl , but increasing the intercellular CO concentration. Polyphasic chlorophyll fluorescence transient and relative fluorescence parameters (JIP test) results indicated that N deficiency increased F, but decreased the maximum quantum yield of primary photochemistry (F/F) and the maximum of the IP, implying that N-limiting condition impaired the whole photo electron transport chain from the donor side of photosystem II (PSII) to the end acceptor side of PSI in . N deficiency enhanced the activities of the antioxidant enzymes, such as ascorbate peroxidase (APX), guaiacol peroxidase (GuPX), dehydro-ascorbate reductase (DHAR), superoxide dismutase (SOD), glutathione peroxidase (GlPX), glutathione reductase (GR), glutathione S-transferase (GST) and -acetylserine (thiol) lyase (OASTL), and the contents of antioxidant compounds including reduced glutathione (GSH), total glutathione (GSH+GSSG) and non-protein thiol compounds in leaves. In contrast, the enhanced activities of catalase (CAT), DHAR, GR, GST and OASTL, the enhanced ASC-GSH cycle and content of sulfur-containing compounds might provide protective roles against oxidative stress in roots under N-limiting conditions. Quantitative real-time PCR (qRT-PCR) analysis indicated that 70% of the enzymes have a consistence between the gene expression pattern and the dynamic of enzyme activity in leaves under different N supplies, whereas only 60% of the enzymes have a consistence in roots. Our results suggested that the antioxidant system and sulfur metabolism take part in the response of N limiting condition in , and this response was different between leaves and roots. Future work should focus on the responsive mechanisms underlying the metabolism of sulfur-containing compounds in under nutrient deficient especially N-limiting conditions.
氮(N)供应减少会影响()幼苗的正常生长,降低 CO 同化、气孔导度(gs)、叶绿素(Chl)含量和 Chl/Chl 比值,但会增加胞间 CO 浓度。多相位叶绿素荧光瞬变和相对荧光参数(JIP 测试)结果表明,N 缺乏会增加 F,但降低 PSII 光系统供体侧到 PSI 末端受体侧的整个光电子传递链的最大量子产量(F/F)和 IP 的最大值,这意味着 N 限制条件会损害()中的整个光电子传递链。N 缺乏会增强抗氧化酶的活性,如抗坏血酸过氧化物酶(APX)、愈创木酚过氧化物酶(GuPX)、脱氢抗坏血酸还原酶(DHAR)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GlPX)、谷胱甘肽还原酶(GR)、谷胱甘肽 S-转移酶(GST)和 -乙酰丝氨酸(硫)裂合酶(OASTL),以及还原型谷胱甘肽(GSH)、总谷胱甘肽(GSH+GSSG)和非蛋白巯基化合物的含量在()叶片中。相比之下,在 N 限制条件下,CAT、DHAR、GR、GST 和 OASTL 的活性增强、ASC-GSH 循环和含硫化合物的含量增加可能为()根提供了抗氧化应激的保护作用。定量实时 PCR(qRT-PCR)分析表明,在不同 N 供应下,叶片中 70%的酶的基因表达模式与酶活性的动态之间存在一致性,而在根中只有 60%的酶具有一致性。我们的结果表明,抗氧化系统和硫代谢参与了()对 N 限制条件的响应,而这种响应在叶片和根之间是不同的。未来的工作应侧重于在营养缺乏特别是 N 限制条件下,()中含硫化合物代谢的响应机制。