Suppr超能文献

基于人工智能的严重糖尿病足溃疡相关分子因素的多模态识别。

Multimodal Identification of Molecular Factors Linked to Severe Diabetic Foot Ulcers Using Artificial Intelligence.

机构信息

Department of Electrical and Computer Engineering, Klesse College of Engineering and Integrated Design, University of Texas at San Antonio, San Antonio, TX 78249, USA.

The National Research Centre, Cairo 12622, Egypt.

出版信息

Int J Mol Sci. 2024 Oct 4;25(19):10686. doi: 10.3390/ijms251910686.

Abstract

Diabetic foot ulcers (DFUs) are a severe complication of diabetes mellitus (DM), which often lead to hospitalization and non-traumatic amputations in the United States. Diabetes prevalence estimates in South Texas exceed the national estimate and the number of diagnosed cases is higher among Hispanic adults compared to their non-Hispanic white counterparts. San Antonio, a predominantly Hispanic city, reports significantly higher annual rates of diabetic amputations compared to Texas. The late identification of severe foot ulcers minimizes the likelihood of reducing amputation risk. The aim of this study was to identify molecular factors related to the severity of DFUs by leveraging a multimodal approach. We first utilized electronic health records (EHRs) from two large demographic groups, encompassing thousands of patients, to identify blood tests such as cholesterol, blood sugar, and specific protein tests that are significantly associated with severe DFUs. Next, we translated the protein components from these blood tests into their ribonucleic acid (RNA) counterparts and analyzed them using public bulk and single-cell RNA sequencing datasets. Using these data, we applied a machine learning pipeline to uncover cell-type-specific and molecular factors associated with varying degrees of DFU severity. Our results showed that several blood test results, such as the Albumin/Creatinine Ratio (ACR) and cholesterol and coagulation tissue factor levels, correlated with DFU severity across key demographic groups. These tests exhibited varying degrees of significance based on demographic differences. Using bulk RNA-Sequenced (RNA-Seq) data, we found that apolipoprotein E () protein, a component of lipoproteins that are responsible for cholesterol transport and metabolism, is linked to DFU severity. Furthermore, the single-cell RNA-Seq (scRNA-seq) analysis revealed a cluster of cells identified as keratinocytes that showed overexpression of in severe DFU cases. Overall, this study demonstrates how integrating extensive EHRs data with single-cell transcriptomics can refine the search for molecular markers and identify cell-type-specific and molecular factors associated with DFU severity while considering key demographic differences.

摘要

糖尿病足溃疡(DFUs)是糖尿病(DM)的一种严重并发症,在美国常导致住院和非创伤性截肢。德克萨斯州南部的糖尿病患病率估计高于全国水平,且西班牙裔成年人的确诊病例数高于非西班牙裔白人。圣安东尼奥是一个以西班牙裔为主的城市,其糖尿病截肢的年发生率明显高于德克萨斯州。严重足溃疡的晚期发现使降低截肢风险的可能性最小化。本研究旨在利用多模态方法鉴定与 DFU 严重程度相关的分子因素。我们首先利用两个大型人群的电子健康记录(EHRs),包含数千名患者,以确定胆固醇、血糖和特定蛋白质测试等血液测试与严重 DFU 显著相关。接下来,我们将这些血液测试中的蛋白质成分转化为它们的核糖核酸(RNA)对应物,并使用公共批量和单细胞 RNA 测序数据集进行分析。使用这些数据,我们应用机器学习管道揭示与不同程度 DFU 严重程度相关的细胞类型特异性和分子因素。我们的结果表明,几项血液测试结果,如白蛋白/肌酐比(ACR)和胆固醇和凝血组织因子水平,在关键人群中与 DFU 严重程度相关。这些测试基于人口统计学差异表现出不同程度的显著。使用批量 RNA 测序(RNA-Seq)数据,我们发现载脂蛋白 E()蛋白与 DFU 严重程度相关,载脂蛋白 E 是负责胆固醇转运和代谢的脂蛋白的组成部分。此外,单细胞 RNA-Seq(scRNA-seq)分析揭示了一个被鉴定为角质形成细胞的细胞簇,在严重 DFU 病例中表现出 过表达。总体而言,本研究表明,如何将广泛的 EHRs 数据与单细胞转录组学相结合,可以细化对分子标志物的搜索,并在考虑关键人口统计学差异的情况下,确定与 DFU 严重程度相关的细胞类型特异性和分子因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5211/11476782/e55df0e605a3/ijms-25-10686-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验