Suppr超能文献

用于目标跟踪的高光谱注意力网络

Hyperspectral Attention Network for Object Tracking.

作者信息

Yu Shuangjiang, Ni Jianjun, Fu Shuai, Qu Tao

机构信息

Beijing Institute of Space Mechanics and Electricity, Beijing 100094, China.

School of Computer Science, Wuhan University, Wuhan 430072, China.

出版信息

Sensors (Basel). 2024 Sep 24;24(19):6178. doi: 10.3390/s24196178.

Abstract

Hyperspectral video provides rich spatial and spectral information, which is crucial for object tracking in complex scenarios. Despite extensive research, existing methods often face an inherent trade-off between rich spectral information and redundant noisy information. This dilemma arises from the efficient utilization of hyperspectral image data channels. To alleviate this problem, this paper introduces a hierarchical spectral attention network for hyperspectral object tracking. We employ a spectral band attention mechanism with adaptive soft threshold to examine the correlations across spectral bands, which integrates the information available in various spectral bands and eliminates redundant information. Moreover, we integrate spectral attention into a hierarchical tracking network to improve the integration of spectral and spatial information. The experimental results on entire public hyperspectral competition dataset WHISPER2020 show the superior performance of our proposed method compared with that of several related methods in visual effects and objective evaluation.

摘要

高光谱视频提供了丰富的空间和光谱信息,这对于复杂场景中的目标跟踪至关重要。尽管进行了广泛的研究,但现有方法在丰富的光谱信息和冗余的噪声信息之间往往面临固有的权衡。这种困境源于高光谱图像数据通道的有效利用。为了缓解这个问题,本文介绍了一种用于高光谱目标跟踪的分层光谱注意力网络。我们采用具有自适应软阈值的光谱带注意力机制来检查光谱带之间的相关性,该机制整合了各个光谱带中的可用信息并消除了冗余信息。此外,我们将光谱注意力集成到分层跟踪网络中,以改善光谱和空间信息的整合。在整个公共高光谱竞赛数据集WHISPER2020上的实验结果表明,与几种相关方法相比,我们提出的方法在视觉效果和客观评估方面具有优越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f788/11479245/3542fd133ccb/sensors-24-06178-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验