Suppr超能文献

基于智能手表的跌倒检测中长短时记忆和转换器模型的实验研究。

Experimental Study of Long Short-Term Memory and Transformer Models for Fall Detection on Smartwatches.

机构信息

Department of Computer Science, Texas State University, San Marcos, TX 78666, USA.

出版信息

Sensors (Basel). 2024 Sep 26;24(19):6235. doi: 10.3390/s24196235.

Abstract

Falls are the second leading cause of unintentional injury deaths worldwide. While numerous wearable fall detection devices incorporating AI models have been developed, none of them are used successfully in a fall detection application running on commodity-based smartwatches in real time. The system misses some falls, and generates an annoying amount of False Positives for practical use. We have investigated and experimented with an LSTM model for fall detection on a smartwatch. Even though the LSTM model has high accuracy during offline testing, the good performance of offline LSTM models cannot be translated to the equivalence of real-time performance. Transformers, on the other hand, can learn long-sequence data and patterns intrinsic to the data due to their self-attention mechanism. This paper compares three variants of LSTM and two variants of Transformer models for learning fall patterns. We trained all models using fall and activity data from three datasets, and the real-time testing of the model was performed using the SmartFall App. Our findings showed that in the offline training, the CNN-LSTM model was better than the Transformer model for all the datasets. However, the Transformer is a preferable choice for deployment in real-time fall detection applications.

摘要

跌倒已成为全球范围内导致非故意伤害死亡的第二大原因。尽管已经开发出许多结合人工智能模型的可穿戴跌倒检测设备,但没有一款设备能成功应用于实时运行在商品智能手表上的跌倒检测应用中。该系统会错过一些跌倒事件,并产生大量烦人的误报,从而无法实际应用。我们已经针对智能手表上的跌倒检测对 LSTM 模型进行了研究和实验。尽管 LSTM 模型在离线测试中具有很高的准确性,但离线 LSTM 模型的良好性能并不能转化为实时性能的等效性。另一方面,由于其自注意力机制,Transformer 可以学习数据中的长序列数据和固有模式。本文比较了 LSTM 的三种变体和 Transformer 的两种变体,用于学习跌倒模式。我们使用来自三个数据集的跌倒和活动数据对所有模型进行了训练,并使用 SmartFall App 对模型进行了实时测试。我们的研究结果表明,在离线训练中,CNN-LSTM 模型在所有数据集上均优于 Transformer 模型。然而,Transformer 是实时跌倒检测应用部署的首选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d834/11478652/05afe112db76/sensors-24-06235-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验