College of Optical Sciences, University of Arizona, Tucson, Arizona, 85721.
Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York, 10021.
Lasers Surg Med. 2021 Aug;53(6):880-891. doi: 10.1002/lsm.23410. Epub 2021 Apr 23.
Portable confocal microscopy (PCM) is a low-cost reflectance confocal microscopy technique that can visualize cellular details of human skin in vivo. When PCM images are acquired with a short exposure time to reduce motion blur and enable real-time 3D imaging, the signal-to-noise ratio (SNR) is decreased significantly, which poses challenges in reliably analyzing cellular features. In this paper, we evaluated deep learning (DL)-based approach for reducing noise in PCM images acquired with a short exposure time.
STUDY DESIGN/MATERIALS AND METHODS: Content-aware image restoration (CARE) network was trained with pairs of low-SNR input and high-SNR ground truth PCM images obtained from 309 distinctive regions of interest (ROIs). Low-SNR input images were acquired from human skin in vivo at the imaging speed of 180 frames/second. The high-SNR ground truth images were generated by registering 30 low-SNR input images obtained from the same ROI and summing them. The CARE network was trained using the Google Colaboratory Pro platform. The denoising performance of the trained CARE network was quantitatively and qualitatively evaluated by using image pairs from 45 unseen ROIs.
CARE denoising improved the image quality significantly, increasing similarity with the ground truth image by 1.9 times, reducing noise by 2.35 times, and increasing SNR by 7.4 dB. Banding noise, prominent in input images, was significantly reduced in CARE denoised images. CARE denoising provided quantitatively and qualitatively better noise reduction than non-DL filtering methods. Qualitative image assessment by three confocal readers showed that CARE denoised images exhibited negligible noise more often than input images and non-DL filtered images.
Results showed the potential of using a DL-based method for denoising PCM images obtained at a high imaging speed. The DL-based denoising method needs to be further trained and tested for PCM images obtained from disease-suspicious skin lesions.
便携式共聚焦显微镜(PCM)是一种低成本的反射共聚焦显微镜技术,可在体内可视化人体皮肤的细胞细节。当 PCM 图像以短曝光时间采集以减少运动模糊并实现实时 3D 成像时,信噪比(SNR)会显著降低,这给可靠地分析细胞特征带来了挑战。在本文中,我们评估了基于深度学习(DL)的方法,用于减少短曝光时间采集的 PCM 图像中的噪声。
研究设计/材料和方法:内容感知图像恢复(CARE)网络使用从 309 个不同的感兴趣区域(ROI)获得的低 SNR 输入和高 SNR 真实 PCM 图像对进行训练。低 SNR 输入图像是在 180 帧/秒的成像速度下从体内人体皮肤采集的。高 SNR 真实图像是通过注册来自同一 ROI 的 30 个低 SNR 输入图像并将它们相加生成的。CARE 网络是使用 Google Colaboratory Pro 平台进行训练的。使用来自 45 个看不见的 ROI 的图像对来定量和定性地评估训练后的 CARE 网络的去噪性能。
CARE 去噪显著提高了图像质量,与真实图像的相似度提高了 1.9 倍,噪声降低了 2.35 倍,SNR 提高了 7.4 dB。输入图像中明显的带状噪声在 CARE 去噪图像中显著减少。CARE 去噪在定量和定性方面都比非 DL 滤波方法提供了更好的噪声减少。三位共聚焦阅读器的定性图像评估表明,CARE 去噪图像比输入图像和非 DL 滤波图像表现出更多的可忽略噪声。
结果表明,使用基于 DL 的方法对高成像速度下采集的 PCM 图像进行去噪具有潜力。需要进一步训练和测试基于 DL 的去噪方法,以用于从可疑皮肤病变采集的 PCM 图像。