Suppr超能文献

基于深度学习的高速便携式反射共焦显微镜去噪。

Deep Learning-Based Denoising in High-Speed Portable Reflectance Confocal Microscopy.

机构信息

College of Optical Sciences, University of Arizona, Tucson, Arizona, 85721.

Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York, 10021.

出版信息

Lasers Surg Med. 2021 Aug;53(6):880-891. doi: 10.1002/lsm.23410. Epub 2021 Apr 23.

Abstract

BACKGROUND AND OBJECTIVE

Portable confocal microscopy (PCM) is a low-cost reflectance confocal microscopy technique that can visualize cellular details of human skin in vivo. When PCM images are acquired with a short exposure time to reduce motion blur and enable real-time 3D imaging, the signal-to-noise ratio (SNR) is decreased significantly, which poses challenges in reliably analyzing cellular features. In this paper, we evaluated deep learning (DL)-based approach for reducing noise in PCM images acquired with a short exposure time.

STUDY DESIGN/MATERIALS AND METHODS: Content-aware image restoration (CARE) network was trained with pairs of low-SNR input and high-SNR ground truth PCM images obtained from 309 distinctive regions of interest (ROIs). Low-SNR input images were acquired from human skin in vivo at the imaging speed of 180 frames/second. The high-SNR ground truth images were generated by registering 30 low-SNR input images obtained from the same ROI and summing them. The CARE network was trained using the Google Colaboratory Pro platform. The denoising performance of the trained CARE network was quantitatively and qualitatively evaluated by using image pairs from 45 unseen ROIs.

RESULTS

CARE denoising improved the image quality significantly, increasing similarity with the ground truth image by 1.9 times, reducing noise by 2.35 times, and increasing SNR by 7.4 dB. Banding noise, prominent in input images, was significantly reduced in CARE denoised images. CARE denoising provided quantitatively and qualitatively better noise reduction than non-DL filtering methods. Qualitative image assessment by three confocal readers showed that CARE denoised images exhibited negligible noise more often than input images and non-DL filtered images.

CONCLUSIONS

Results showed the potential of using a DL-based method for denoising PCM images obtained at a high imaging speed. The DL-based denoising method needs to be further trained and tested for PCM images obtained from disease-suspicious skin lesions.

摘要

背景与目的

便携式共聚焦显微镜(PCM)是一种低成本的反射共聚焦显微镜技术,可在体内可视化人体皮肤的细胞细节。当 PCM 图像以短曝光时间采集以减少运动模糊并实现实时 3D 成像时,信噪比(SNR)会显著降低,这给可靠地分析细胞特征带来了挑战。在本文中,我们评估了基于深度学习(DL)的方法,用于减少短曝光时间采集的 PCM 图像中的噪声。

研究设计/材料和方法:内容感知图像恢复(CARE)网络使用从 309 个不同的感兴趣区域(ROI)获得的低 SNR 输入和高 SNR 真实 PCM 图像对进行训练。低 SNR 输入图像是在 180 帧/秒的成像速度下从体内人体皮肤采集的。高 SNR 真实图像是通过注册来自同一 ROI 的 30 个低 SNR 输入图像并将它们相加生成的。CARE 网络是使用 Google Colaboratory Pro 平台进行训练的。使用来自 45 个看不见的 ROI 的图像对来定量和定性地评估训练后的 CARE 网络的去噪性能。

结果

CARE 去噪显著提高了图像质量,与真实图像的相似度提高了 1.9 倍,噪声降低了 2.35 倍,SNR 提高了 7.4 dB。输入图像中明显的带状噪声在 CARE 去噪图像中显著减少。CARE 去噪在定量和定性方面都比非 DL 滤波方法提供了更好的噪声减少。三位共聚焦阅读器的定性图像评估表明,CARE 去噪图像比输入图像和非 DL 滤波图像表现出更多的可忽略噪声。

结论

结果表明,使用基于 DL 的方法对高成像速度下采集的 PCM 图像进行去噪具有潜力。需要进一步训练和测试基于 DL 的去噪方法,以用于从可疑皮肤病变采集的 PCM 图像。

相似文献

1
Deep Learning-Based Denoising in High-Speed Portable Reflectance Confocal Microscopy.
Lasers Surg Med. 2021 Aug;53(6):880-891. doi: 10.1002/lsm.23410. Epub 2021 Apr 23.
3
SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI.
Neuroimage. 2022 Jun;253:119033. doi: 10.1016/j.neuroimage.2022.119033. Epub 2022 Mar 1.
5
Dose reduction and image enhancement in micro-CT using deep learning.
Med Phys. 2023 Sep;50(9):5643-5656. doi: 10.1002/mp.16385. Epub 2023 Apr 5.
8
Improving Xenon-129 lung ventilation image SNR with deep-learning based image reconstruction.
Magn Reson Med. 2024 Dec;92(6):2546-2559. doi: 10.1002/mrm.30250. Epub 2024 Aug 18.
9
Pediatric evaluations for deep learning CT denoising.
Med Phys. 2024 Feb;51(2):978-990. doi: 10.1002/mp.16901. Epub 2023 Dec 21.

引用本文的文献

2
Optical imaging technologies for cancer detection in low-resource settings.
Curr Opin Biomed Eng. 2023 Dec;28. doi: 10.1016/j.cobme.2023.100495. Epub 2023 Aug 23.
3
Confocal Microscopy for Diagnosis and Management of Cutaneous Malignancies: Clinical Impacts and Innovation.
Diagnostics (Basel). 2023 Feb 23;13(5):854. doi: 10.3390/diagnostics13050854.
4
In vivo microscopy as an adjunctive tool to guide detection, diagnosis, and treatment.
J Biomed Opt. 2022 Apr;27(4). doi: 10.1117/1.JBO.27.4.040601.
5
Low-cost, chromatic confocal endomicroscope for cellular imaging .
Biomed Opt Express. 2021 Aug 16;12(9):5629-5643. doi: 10.1364/BOE.434892. eCollection 2021 Sep 1.

本文引用的文献

1
Speckle-free, near-infrared portable confocal microscope.
Appl Opt. 2020 Aug 1;59(22):G41-G46. doi: 10.1364/AO.392004.
2
Feasibility and implementation of portable confocal microscopy for point-of-care diagnosis of cutaneous lesions in a low-resource setting.
J Am Acad Dermatol. 2021 Feb;84(2):499-502. doi: 10.1016/j.jaad.2020.04.147. Epub 2020 May 4.
3
Content-aware image restoration for electron microscopy.
Methods Cell Biol. 2019;152:277-289. doi: 10.1016/bs.mcb.2019.05.001. Epub 2019 Jul 11.
5
Content-aware image restoration: pushing the limits of fluorescence microscopy.
Nat Methods. 2018 Dec;15(12):1090-1097. doi: 10.1038/s41592-018-0216-7. Epub 2018 Nov 26.
6
Smartphone confocal microscopy for imaging cellular structures in human skin .
Biomed Opt Express. 2018 Mar 26;9(4):1906-1915. doi: 10.1364/BOE.9.001906. eCollection 2018 Apr 1.
7
Reflectance confocal microscopy of skin in vivo: From bench to bedside.
Lasers Surg Med. 2017 Jan;49(1):7-19. doi: 10.1002/lsm.22600. Epub 2016 Oct 27.
8
Reflectance confocal microscopy for the diagnosis of eosinophilic esophagitis: a pilot study conducted on biopsy specimens.
Gastrointest Endosc. 2011 Nov;74(5):992-1000. doi: 10.1016/j.gie.2011.07.020. Epub 2011 Sep 23.
9
Adaptive noise smoothing filter for images with signal-dependent noise.
IEEE Trans Pattern Anal Mach Intell. 1985 Feb;7(2):165-77. doi: 10.1109/tpami.1985.4767641.
10
Image quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process. 2004 Apr;13(4):600-12. doi: 10.1109/tip.2003.819861.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验