Suppr超能文献

基于改进的 YOLOv5 模型与区域分割的虾苗计数。

Shrimp Larvae Counting Based on Improved YOLOv5 Model with Regional Segmentation.

机构信息

Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

出版信息

Sensors (Basel). 2024 Sep 30;24(19):6328. doi: 10.3390/s24196328.

Abstract

Counting shrimp larvae is an essential part of shrimp farming. Due to their tiny size and high density, this task is exceedingly difficult. Thus, we introduce an algorithm for counting densely packed shrimp larvae utilizing an enhanced You Only Look Once version 5 (YOLOv5) model through a regional segmentation approach. First, the C2f and convolutional block attention modules are used to improve the capabilities of YOLOv5 in recognizing the small shrimp. Moreover, employing a regional segmentation technique can decrease the receptive field area, thereby enhancing the shrimp counter's detection performance. Finally, a strategy for stitching and deduplication is implemented to tackle the problem of double counting across various segments. The findings from the experiments indicate that the suggested algorithm surpasses several other shrimp counting techniques in terms of accuracy. Notably, for high-density shrimp larvae in large quantities, this algorithm attained an accuracy exceeding 98%.

摘要

对虾苗进行计数是对虾养殖的重要环节。由于虾苗个体微小且密度较高,这项工作极具挑战性。因此,我们提出了一种利用增强型 You Only Look Once 版本 5(YOLOv5)模型,通过区域分割方法对密集的虾苗进行计数的算法。首先,使用 C2f 和卷积块注意力模块提高 YOLOv5 识别小对虾的能力。此外,采用区域分割技术可以减少感受野面积,从而提高虾计数器的检测性能。最后,采用拼接和去重策略来解决不同区域重复计数的问题。实验结果表明,所提出的算法在准确性方面优于其他几种虾苗计数技术。特别是在大量高密度虾苗的情况下,该算法的准确率超过 98%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ecf/11478650/50c7416fff96/sensors-24-06328-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验