Suppr超能文献

大语言模型在胃肠病学中的应用:文献综述

The Application of Large Language Models in Gastroenterology: A Review of the Literature.

作者信息

Maida Marcello, Celsa Ciro, Lau Louis H S, Ligresti Dario, Baraldo Stefano, Ramai Daryl, Di Maria Gabriele, Cannemi Marco, Facciorusso Antonio, Cammà Calogero

机构信息

Department of Medicine and Surgery, University of Enna 'Kore', 94100 Enna, Italy.

Gastroenterology Unit, Umberto I Hospital, 94100 Enna, Italy.

出版信息

Cancers (Basel). 2024 Sep 28;16(19):3328. doi: 10.3390/cancers16193328.

Abstract

Large language models (LLMs) are transforming the medical landscape by enhancing access to information, diagnostics, treatment customization, and medical education, especially in areas like Gastroenterology. LLMs utilize extensive medical data to improve decision-making, leading to better patient outcomes and personalized medicine. These models are instrumental in interpreting medical literature and synthesizing patient data, facilitating real-time knowledge for physicians and supporting educational pursuits in medicine. Despite their potential, the complete integration of LLMs in real-life remains ongoing, particularly requiring further study and regulation. This review highlights the existing evidence supporting LLMs' use in Gastroenterology, addressing both their potential and limitations. Recent studies demonstrate LLMs' ability to answer questions from physicians and patients accurately. Specific applications in this field, such as colonoscopy, screening for colorectal cancer, and hepatobiliary and inflammatory bowel diseases, underscore LLMs' promise in improving the communication and understanding of complex medical scenarios. Moreover, the review discusses LLMs' efficacy in clinical contexts, providing guideline-based recommendations and supporting decision-making processes. Despite these advancements, challenges such as data completeness, reference suitability, variability in response accuracy, dependency on input phrasing, and a lack of patient-generated questions underscore limitations in reproducibility and generalizability. The effective integration of LLMs into medical practice demands refinement tailored to specific medical contexts and guidelines. Overall, while LLMs hold significant potential in transforming medical practice, ongoing development and contextual training are essential to fully realize their benefits.

摘要

大型语言模型(LLMs)正在改变医学格局,通过增加信息获取、诊断、治疗定制和医学教育,特别是在胃肠病学等领域。大型语言模型利用大量医学数据来改善决策,从而带来更好的患者治疗效果和个性化医疗。这些模型有助于解读医学文献和综合患者数据,为医生提供实时知识,并支持医学教育。尽管它们具有潜力,但大型语言模型在现实生活中的全面整合仍在进行中,尤其需要进一步研究和监管。本综述强调了支持大型语言模型在胃肠病学中应用的现有证据,探讨了它们的潜力和局限性。最近的研究表明,大型语言模型有能力准确回答医生和患者的问题。该领域的具体应用,如结肠镜检查、结直肠癌筛查以及肝胆和炎症性肠病,凸显了大型语言模型在改善复杂医疗场景的沟通和理解方面的前景。此外,综述还讨论了大型语言模型在临床环境中的疗效,提供基于指南的建议并支持决策过程。尽管有这些进展,但数据完整性、参考文献适用性、回答准确性的变异性、对输入措辞的依赖性以及缺乏患者提出的问题等挑战,凸显了可重复性和普遍性方面的局限性。将大型语言模型有效整合到医疗实践中需要根据特定医疗环境和指南进行优化。总体而言,虽然大型语言模型在改变医疗实践方面具有巨大潜力,但持续的开发和情境训练对于充分实现其益处至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f1/11475222/36a2a0592c9a/cancers-16-03328-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验