Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands.
Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Urology, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands.
Eur J Nucl Med Mol Imaging. 2021 Feb;48(2):340-349. doi: 10.1007/s00259-020-04971-z. Epub 2020 Jul 31.
Quantitative prostate-specific membrane antigen (PSMA) PET analysis may provide for non-invasive and objective risk stratification of primary prostate cancer (PCa) patients. We determined the ability of machine learning-based analysis of quantitative [F]DCFPyL PET metrics to predict metastatic disease or high-risk pathological tumor features.
In a prospective cohort study, 76 patients with intermediate- to high-risk PCa scheduled for robot-assisted radical prostatectomy with extended pelvic lymph node dissection underwent pre-operative [F]DCFPyL PET-CT. Primary tumors were delineated using 50-70% peak isocontour thresholds on images with and without partial-volume correction (PVC). Four hundred and eighty standardized radiomic features were extracted per tumor. Random forest models were trained to predict lymph node involvement (LNI), presence of any metastasis, Gleason score ≥ 8, and presence of extracapsular extension (ECE). For comparison, models were also trained using standard PET features (SUVs, volume, total PSMA uptake). Model performance was validated using 50 times repeated 5-fold cross-validation yielding the mean receiver-operator characteristic curve AUC.
The radiomics-based machine learning models predicted LNI (AUC 0.86 ± 0.15, p < 0.01), nodal or distant metastasis (AUC 0.86 ± 0.14, p < 0.01), Gleason score (0.81 ± 0.16, p < 0.01), and ECE (0.76 ± 0.12, p < 0.01). The highest AUCs reached using standard PET metrics were lower than those of radiomics-based models. For LNI and metastasis prediction, PVC and a higher delineation threshold improved model stability. Machine learning pre-processing methods had a minor impact on model performance.
Machine learning-based analysis of quantitative [F]DCFPyL PET metrics can predict LNI and high-risk pathological tumor features in primary PCa patients. These findings indicate that PSMA expression detected on PET is related to both primary tumor histopathology and metastatic tendency. Multicenter external validation is needed to determine the benefits of using radiomics versus standard PET metrics in clinical practice.
定量前列腺特异性膜抗原(PSMA)PET 分析可能为原发性前列腺癌(PCa)患者提供非侵入性和客观的风险分层。我们确定了基于机器学习的定量[F]DCFPyL PET 指标分析预测转移性疾病或高危病理肿瘤特征的能力。
在一项前瞻性队列研究中,76 名中高危 PCa 患者计划行机器人辅助根治性前列腺切除术和扩大盆腔淋巴结清扫术,术前进行[F]DCFPyL PET-CT 检查。使用 50-70%峰值等浓度曲线阈值在有和没有部分容积校正(PVC)的图像上对原发性肿瘤进行描绘。每个肿瘤提取 480 个标准化放射组学特征。随机森林模型用于预测淋巴结受累(LNI)、任何转移、Gleason 评分≥8 和包膜外延伸(ECE)。为了比较,还使用标准 PET 特征(SUV、体积、总 PSMA 摄取量)训练模型。使用 50 次重复 5 折交叉验证得到平均接收器操作特征曲线 AUC 来验证模型性能。
基于放射组学的机器学习模型预测 LNI(AUC 0.86±0.15,p<0.01)、淋巴结或远处转移(AUC 0.86±0.14,p<0.01)、Gleason 评分(0.81±0.16,p<0.01)和 ECE(0.76±0.12,p<0.01)。使用标准 PET 指标达到的最高 AUC 低于基于放射组学的模型。对于 LNI 和转移预测,PVC 和较高的描绘阈值可提高模型稳定性。机器学习预处理方法对模型性能的影响较小。
基于定量[F]DCFPyL PET 指标的机器学习分析可预测原发性 PCa 患者的 LNI 和高危病理肿瘤特征。这些发现表明,PET 上检测到的 PSMA 表达与原发性肿瘤组织病理学和转移倾向有关。需要进行多中心外部验证,以确定在临床实践中使用放射组学与标准 PET 指标的益处。