Suppr超能文献

多阈值递归率图:一种用于阿尔茨海默病和额颞叶痴呆脑电图分析的新方法。

Multi-Threshold Recurrence Rate Plot: A Novel Methodology for EEG Analysis in Alzheimer's Disease and Frontotemporal Dementia.

作者信息

Zheng Huang, Xiong Xingliang, Zhang Xuejun

机构信息

School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China.

Key Laboratory of Child Development and Learning Science, Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.

出版信息

Brain Sci. 2024 Jun 1;14(6):565. doi: 10.3390/brainsci14060565.

Abstract

This study introduces Multi-Threshold Recurrence Rate Plots (MTRRP), a novel methodology for analyzing dynamic patterns in complex systems, such as those influenced by neurodegenerative diseases in brain activity. MTRRP characterizes how recurrence rates evolve with increasing recurrence thresholds. A key innovation of our approach, Recurrence Complexity, captures structural complexity by integrating local randomness and global structural features through the product of Recurrence Rate Gradient and Recurrence Hurst, both derived from MTRRP. We applied this technique to resting-state EEG data from patients diagnosed with Alzheimer's Disease (AD), Frontotemporal Dementia (FTD), and age-matched healthy controls. The results revealed significantly higher recurrence complexity in the occipital areas of AD and FTD patients, particularly pronounced in the Alpha and Beta frequency bands. Furthermore, EEG features derived from MTRRP were evaluated using a Support Vector Machine with leave-one-out cross-validation, achieving a classification accuracy of 87.7%. These findings not only underscore the utility of MTRRP in detecting distinct neurophysiological patterns associated with neurodegenerative diseases but also highlight its broader applicability in time series analysis, providing a substantial tool for advancing medical diagnostics and research.

摘要

本研究介绍了多阈值递归率图(MTRRP),这是一种用于分析复杂系统中动态模式的新方法,例如受大脑活动中神经退行性疾病影响的系统。MTRRP描述了递归率如何随着递归阈值的增加而演变。我们方法的一个关键创新——递归复杂性,通过将递归率梯度和递归赫斯特(均源自MTRRP)的乘积整合局部随机性和全局结构特征来捕捉结构复杂性。我们将此技术应用于被诊断患有阿尔茨海默病(AD)、额颞叶痴呆(FTD)的患者以及年龄匹配的健康对照的静息态脑电图数据。结果显示,AD和FTD患者枕叶区域的递归复杂性显著更高,在阿尔法和贝塔频段尤为明显。此外,使用留一法交叉验证的支持向量机对源自MTRRP的脑电图特征进行评估,分类准确率达到87.7%。这些发现不仅强调了MTRRP在检测与神经退行性疾病相关的独特神经生理模式方面的实用性,还突出了其在时间序列分析中的更广泛适用性,为推进医学诊断和研究提供了一个重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61f/11202180/05afae0afd70/brainsci-14-00565-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验