Suppr超能文献

使用常规临床和认知测量方法对多中心代表性不足样本中的阿尔茨海默病和额颞叶痴呆进行分类:一项横断面观察性研究。

Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study.

作者信息

Maito Marcelo Adrián, Santamaría-García Hernando, Moguilner Sebastián, Possin Katherine L, Godoy María E, Avila-Funes José Alberto, Behrens María I, Brusco Ignacio L, Bruno Martín A, Cardona Juan F, Custodio Nilton, García Adolfo M, Javandel Shireen, Lopera Francisco, Matallana Diana L, Miller Bruce, de Oliveira Maira Okada, Pina-Escudero Stefanie D, Slachevsky Andrea, Ortiz Ana L Sosa, Takada Leonel T, Tagliazuchi Enzo, Valcour Victor, Yokoyama Jennifer S, Ibañez Agustín

机构信息

Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina.

Global Brain Health Institute, University of California, San Francisco, CA, USA.

出版信息

Lancet Reg Health Am. 2023 Jan;17. doi: 10.1016/j.lana.2022.100387. Epub 2022 Nov 3.

Abstract

BACKGROUND

Global brain health initiatives call for improving methods for the diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper-middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers.

METHODS

This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort).

FINDINGS

A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex.

INTERPRETATION

Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region.

FUNDING

This work was supported by the Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat), funded by NIA/NIH (R01AG057234), Alzheimer's Association (SG-20-725707-ReDLat), Rainwater Foundation, Takeda (CW2680521), Global Brain Health Institute; as well as CONICET; FONCYT-PICT (2017-1818, 2017-1820); PIIECC, Facultad de Humanidades, Usach; Sistema General de Regalías de Colombia (BPIN2018000100059), Universidad del Valle (CI 5316); ANID/FONDECYT Regular (1210195, 1210176, 1210176); ANID/FONDAP (15150012); ANID/PIA/ANILLOS ACT210096; and Alzheimer's Association GBHI ALZ UK-22-865742.

摘要

背景

全球脑健康倡议呼吁改进在代表性不足人群中诊断阿尔茨海默病(AD)和额颞叶痴呆(FTD)的方法。然而,中高收入国家(UMICs)和中低收入国家(LMICs),如拉丁美洲国家(LAC)的诊断程序面临多重挑战。这些挑战包括诊断方法的异质性、临床协调的缺乏以及生物标志物获取受限。

方法

这项横断面观察性研究旨在利用在五个拉丁美洲国家的11个临床中心收集的1794名参与者(904名被诊断为AD,282名被诊断为FTD,606名健康对照者(HCs))的人口统计学、临床和认知数据,确定区分AD和FTD的最佳预测因素组合(ReDLat队列)。

结果

一种全自动计算方法包括经典统计方法、支持向量机程序和机器学习技术(随机森林和序列特征选择程序)。结果显示对AD患者、FTD患者和HCs进行了准确分类。一个机器学习模型产生了区分AD和FTD患者的最佳值,准确率 = 0.91。最重要的特征包括社会认知、神经精神症状、执行功能表现和认知筛查;年龄、教育程度和性别也有次要贡献。

解读

结果表明,应用于存档临床数据集的数据驱动技术可以加强资源有限地区的诊断程序。这些结果还表明,特定的细粒度认知和行为测量可能有助于拉丁美洲国家AD和FTD的诊断。此外,我们的结果突出了该地区痴呆诊断临床工具协调统一的机会。

资金支持

这项工作得到了拉丁美洲扩大痴呆症研究多伙伴联盟(ReDLat)的支持,该联盟由美国国立衰老研究所/美国国立卫生研究院(R01AG057234)、阿尔茨海默病协会(SG - 20 - 725707 - ReDLat)、雨水基金会、武田制药(CW2680521)、全球脑健康研究所资助;以及阿根廷国家科学技术研究委员会;阿根廷国家科学技术促进局 - 国家科技计划(2017 - 1818,2017 - 1820);智利大学人文学院PIIECC;智利圣地亚哥大学;哥伦比亚总捐赠系统(BPIN2018000100059)、瓦莱大学(CI 5316);智利国家科学技术研究委员会/国家科学技术基金常规项目(1210195,1210176,1210176);智利国家科学技术研究委员会/基础科学研究基金(15150012);智利国家科学技术研究委员会/国际合作与创新项目/项目环ACT210096;以及阿尔茨海默病协会GBHI英国阿尔茨海默病协会 - 22 - 865742资助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8440/9903999/81be4ea8336b/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验