Blázquez-Carmona Pablo, Mora-Macías Juan, Pajares Antonia, Mármol Álvaro, Reina-Romo Esther
Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Spain.
Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Huelva, Spain.
Front Bioeng Biotechnol. 2024 Oct 1;12:1476473. doi: 10.3389/fbioe.2024.1476473. eCollection 2024.
Woven bone, a heterogeneous and temporary tissue in bone regeneration, is remodeled by osteoblastic and osteoclastic activity and shaped by mechanical stress to restore healthy tissue properties. Characterizing this tissue at different length scales is crucial for developing micromechanical models that optimize mechanical parameters, thereby controlling regeneration and preventing non-unions.
This study examines the temporal evolution of the mechanical properties of bone distraction callus using nanoindentation, ash analysis, micro-CT for trabecular microarchitecture, and Raman spectroscopy for mineral quality. It also establishes single- and two-parameter power laws based on experimental data to predict tissue-level and bulk mechanical properties.
At the macro-scale, the tissue exhibited a considerable increase in bone fraction, controlled by the widening of trabeculae. The Raman mineral-to-matrix ratios increased to cortical levels during regeneration, but the local elastic modulus remained lower. During healing, the tissue underwent changes in ash fraction and in the percentages of Calcium and Phosphorus. Six statistically significant power laws were identified based on the ash fraction, bone fraction, and chemical and Raman parameters.
The microarchitecture of woven bone plays a more significant role than its chemical composition in determining the apparent elastic modulus of the tissue. Raman parameters were demonstrated to provide more significant power laws correlations with the micro-scale elastic modulus than mineral content from ash analysis.
编织骨是骨再生过程中的一种异质性临时组织,通过成骨细胞和破骨细胞的活动进行重塑,并在机械应力作用下塑形,以恢复健康组织特性。在不同长度尺度上对该组织进行表征对于开发优化机械参数的微观力学模型至关重要,从而控制再生并预防骨不连。
本研究使用纳米压痕、灰分分析、用于小梁微结构的显微计算机断层扫描(micro-CT)以及用于矿物质质量的拉曼光谱,研究骨牵引骨痂力学性能的时间演变。它还基于实验数据建立单参数和双参数幂律,以预测组织水平和整体力学性能。
在宏观尺度上,组织的骨分数显著增加,这是由小梁增宽控制的。再生过程中拉曼矿物质与基质的比率增加到皮质骨水平,但局部弹性模量仍然较低。在愈合过程中,组织的灰分分数以及钙和磷的百分比发生了变化。基于灰分分数、骨分数以及化学和拉曼参数,确定了六个具有统计学意义的幂律。
在确定组织的表观弹性模量方面,编织骨的微结构比其化学成分发挥着更重要的作用。与灰分分析中的矿物质含量相比,拉曼参数被证明与微观尺度弹性模量具有更显著的幂律相关性。