Suppr超能文献

基于纵向结构磁共振成像的注意力引导3D卷积神经网络与病变特征选择用于早期阿尔茨海默病预测

Attention-Guided 3D CNN With Lesion Feature Selection for Early Alzheimer's Disease Prediction Using Longitudinal sMRI.

作者信息

Liu Jinwei, Xu Yashu, Liu Yi, Luo Huating, Huang Wenxiang, Yao Lizhong

出版信息

IEEE J Biomed Health Inform. 2025 Jan;29(1):324-332. doi: 10.1109/JBHI.2024.3482001. Epub 2025 Jan 7.

Abstract

Predicting the progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD) is critical for early intervention. Towards this end, various deep learning models have been applied in this domain, typically relying on structural magnetic resonance imaging (sMRI) data from a single time point whereas neglecting the dynamic changes in brain structure over time. Current longitudinal studies inadequately explore disease evolution dynamics and are burdened by high computational complexity. This paper introduces a novel lightweight 3D convolutional neural network specifically designed to capture the evolution of brain diseases for modeling the progression of MCI. First, a longitudinal lesion feature selection strategy is proposed to extract core features from temporal data, facilitating the detection of subtle differences in brain structure between two time points. Next, to refine the model for a more concentrated emphasis on lesion features, a disease trend attention mechanism is introduced to learn the dependencies between overall disease trends and local variation features. Finally, disease prediction visualization techniques are employed to improve the interpretability of the final predictions. Extensive experiments demonstrate that the proposed model achieves state-of-the-art performance in terms of area under the curve (AUC), accuracy, specificity, precision, and F1 score. This study confirms the efficacy of our early diagnostic method, utilizing only two follow-up sMRI scans to predict the disease status of MCI patients 24 months later with an AUC of 79.03%.

摘要

预测从轻度认知障碍(MCI)到阿尔茨海默病(AD)的进展对于早期干预至关重要。为此,各种深度学习模型已应用于该领域,通常依赖于单个时间点的结构磁共振成像(sMRI)数据,而忽略了脑结构随时间的动态变化。当前的纵向研究对疾病演变动态的探索不足,且计算复杂度高。本文介绍了一种新颖的轻量级三维卷积神经网络,专门设计用于捕捉脑部疾病的演变,以对MCI的进展进行建模。首先,提出了一种纵向病变特征选择策略,从时间数据中提取核心特征,便于检测两个时间点之间脑结构的细微差异。其次,为了优化模型,使其更集中于病变特征,引入了一种疾病趋势注意力机制,以学习整体疾病趋势与局部变异特征之间的依赖性。最后,采用疾病预测可视化技术来提高最终预测的可解释性。大量实验表明,所提出的模型在曲线下面积(AUC)、准确率、特异性、精确率和F1分数方面达到了当前最优性能。本研究证实了我们早期诊断方法的有效性,仅利用两次随访sMRI扫描,就能预测24个月后MCI患者的疾病状态,AUC为79.03%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验