Bernstorff Martin, Jefsen Oskar Hougaard
Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark.
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Acta Neuropsychiatr. 2024 Oct 17;37:e32. doi: 10.1017/neu.2024.29.
Psychiatric research applies statistical methods that can be divided in two frameworks: causal inference and prediction. Recent proposals suggest a down-prioritisation of causal inference and argue that prediction paves the road to 'precision psychiatry' (i.e., individualised treatment). In this perspective, we critically appraise these proposals.
We outline strengths and weaknesses of causal inference and prediction frameworks and describe the link between clinical decision-making and counterfactual predictions (i.e., causality). We describe three key causal structures that, if not handled correctly, may cause erroneous interpretations, and three pitfalls in prediction research.
Prediction and causal inference are both needed in psychiatric research and their relative importance is context-dependent. When individualised treatment decisions are needed, causal inference is necessary.
This perspective defends the importance of causal inference for precision psychiatry.
精神病学研究应用的统计方法可分为两个框架:因果推断和预测。最近的提议表明应降低因果推断的优先级,并认为预测为“精准精神病学”(即个体化治疗)铺平了道路。从这一角度出发,我们对这些提议进行批判性评估。
我们概述因果推断和预测框架的优缺点,并描述临床决策与反事实预测(即因果关系)之间的联系。我们描述了三种关键的因果结构,如果处理不当,可能会导致错误解读,以及预测研究中的三个陷阱。
精神病学研究既需要预测也需要因果推断,它们的相对重要性取决于具体情况。当需要做出个体化治疗决策时,因果推断是必要的。
这一观点捍卫了因果推断对精准精神病学的重要性。