Krishnadas Rajeev, Leighton Samuel P, Jones Peter B
Department of Psychiatry, University of Cambridge, Cambridge, UK.
School of Health and Wellbeing, University of Glasgow, Glasgow, UK.
Br J Psychiatry. 2025 Mar;226(3):184-188. doi: 10.1192/bjp.2024.258. Epub 2025 Jan 15.
Making informed clinical decisions based on individualised outcome predictions is the cornerstone of precision psychiatry. Prediction models currently employed in psychiatry rely on algorithms that map a statistical relationship between clinical features (predictors/risk factors) and subsequent clinical outcomes. They rely on associations that overlook the underlying causal structures within the data, including the presence of latent variables, and the evolution of predictors and outcomes over time. As a result, predictions from sparse associative models from routinely collected data are rarely actionable at an individual level. To be actionable, prediction models should address these shortcomings. We provide a brief overview of a general framework for the rationale for implementing causal and actionable predictions using counterfactual explanations to advance predictive modelling studies, which has translational implications. We have included an extensive glossary of terminology used in this paper and the literature (Supplementary Box 1) and provide a concrete example to demonstrate this conceptually, and a reading list for those interested in this field (Supplementary Box 2).
基于个体化结局预测做出明智的临床决策是精准精神病学的基石。目前精神病学中使用的预测模型依赖于算法,这些算法描绘了临床特征(预测因子/风险因素)与后续临床结局之间的统计关系。它们依赖于关联,而忽略了数据中的潜在因果结构,包括潜在变量的存在以及预测因子和结局随时间的演变。因此,从常规收集的数据中得出的稀疏关联模型的预测在个体层面上很少具有可操作性。为了具有可操作性,预测模型应解决这些缺点。我们简要概述了一个通用框架,该框架用于使用反事实解释来推进预测建模研究以实现因果和可操作预测的基本原理,这具有转化意义。我们在本文中包含了一个广泛的术语表以及文献中使用的术语(补充框1),并提供了一个具体示例从概念上说明这一点,还为该领域感兴趣的人提供了一份阅读清单(补充框2)。