Suppr超能文献

使用基于强化学习的加权集成方法进行稀有事件采样。

Rare-Event Sampling using a Reinforcement Learning-Based Weighted Ensemble Method.

作者信息

Yang Darian T, Goldberg Alex M, Chong Lillian T

机构信息

Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania 15260.

Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260.

出版信息

bioRxiv. 2024 Oct 11:2024.10.09.617475. doi: 10.1101/2024.10.09.617475.

Abstract

Despite the power of path sampling strategies in enabling simulations of rare events, such strategies have not reached their full potential. A common challenge that remains is the identification of a progress coordinate that captures the slow relevant motions of a rare event. Here we have developed a weighted ensemble (WE) path sampling strategy that exploits reinforcement learning to automatically identify an effective progress coordinate among a set of potential coordinates during a simulation. We apply our WE strategy with reinforcement learning to three benchmark systems: (i) an egg carton-shaped toy potential, (ii) an S-shaped toy potential, and (iii) a dimer of the HIV-1 capsid protein (C-terminal domain). To enable rapid testing of the latter system at the atomic level, we employed discrete-state synthetic molecular dynamics trajectories using a generative, fine-grained Markov state model that was based on extensive conventional simulations. Our results demonstrate that using concepts from reinforcement learning with a weighted ensemble of trajectories automatically identifies relevant progress co-ordinates among multiple candidates at a given time during a simulation. Due to the rigorous weighting of trajectories, the simulations maintain rigorous kinetics.

摘要

尽管路径采样策略在实现罕见事件模拟方面具有强大功能,但这些策略尚未充分发挥其潜力。仍然存在的一个常见挑战是确定一个能够捕捉罕见事件缓慢相关运动的进展坐标。在此,我们开发了一种加权系综(WE)路径采样策略,该策略利用强化学习在模拟过程中从一组潜在坐标中自动识别出有效的进展坐标。我们将带有强化学习的WE策略应用于三个基准系统:(i)一个蛋盒形状的玩具势;(ii)一个S形玩具势;以及(iii)HIV-1衣壳蛋白(C末端结构域)的二聚体。为了能够在原子水平上快速测试后一个系统,我们使用了基于广泛传统模拟的生成式、细粒度马尔可夫状态模型的离散状态合成分子动力学轨迹。我们的结果表明,将强化学习的概念与轨迹的加权系综相结合,能够在模拟过程中的给定时间自动从多个候选坐标中识别出相关的进展坐标。由于对轨迹进行了严格加权,模拟保持了严格的动力学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验