Department of Chemistry, University of Colorado, Boulder, CO 80309.
Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706.
Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2221048120. doi: 10.1073/pnas.2221048120. Epub 2023 Mar 15.
The ability to predict and understand complex molecular motions occurring over diverse timescales ranging from picoseconds to seconds and even hours in biological systems remains one of the largest challenges to chemical theory. Markov state models (MSMs), which provide a memoryless description of the transitions between different states of a biochemical system, have provided numerous important physically transparent insights into biological function. However, constructing these models often necessitates performing extremely long molecular simulations to converge the rates. Here, we show that by incorporating memory via the time-convolutionless generalized master equation (TCL-GME) one can build a theoretically transparent and physically intuitive memory-enriched model of biochemical processes with up to a three order of magnitude reduction in the simulation data required while also providing a higher temporal resolution. We derive the conditions under which the TCL-GME provides a more efficient means to capture slow dynamics than MSMs and rigorously prove when the two provide equally valid and efficient descriptions of the slow configurational dynamics. We further introduce a simple averaging procedure that enables our TCL-GME approach to quickly converge and accurately predict long-time dynamics even when parameterized with noisy reference data arising from short trajectories. We illustrate the advantages of the TCL-GME using alanine dipeptide, the human argonaute complex, and FiP35 WW domain.
预测和理解生物系统中从皮秒到秒,甚至小时的不同时间尺度上的复杂分子运动的能力仍然是化学理论面临的最大挑战之一。马尔可夫状态模型(MSM)为生化系统不同状态之间的跃迁提供了无记忆描述,为理解生物功能提供了许多重要的、具有物理透明度的见解。然而,构建这些模型通常需要进行极其长时间的分子模拟以收敛速率。在这里,我们通过引入无时间卷积的广义主方程(TCL-GME)中的记忆,展示了如何构建一个理论上透明且具有物理直观的生物化学过程的记忆增强模型,所需的模拟数据减少了三个数量级,同时还提供了更高的时间分辨率。我们推导出了 TCL-GME 比 MSM 更有效地捕捉慢动力学的条件,并严格证明了当这两种方法对慢构动态提供同样有效和高效的描述时。我们进一步引入了一种简单的平均程序,即使使用来自短轨迹的噪声参考数据进行参数化,我们的 TCL-GME 方法也可以快速收敛并准确预测长时间动力学。我们使用丙氨酸二肽、人 Argonaute 复合物和 FiP35 WW 结构域来说明 TCL-GME 的优势。