基于人工智能的多维神经影像系统用于刻画重性抑郁障碍中脑结构和功能的异质性:COORDINATE-MDD 联盟的设计和原理。

AI-based dimensional neuroimaging system for characterizing heterogeneity in brain structure and function in major depressive disorder: COORDINATE-MDD consortium design and rationale.

机构信息

Department of Psychological Sciences, University of East London, London, UK.

Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.

出版信息

BMC Psychiatry. 2023 Jan 23;23(1):59. doi: 10.1186/s12888-022-04509-7.

Abstract

BACKGROUND

Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states.

METHODS

We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD). Utilizing imaging harmonization and machine learning methods in a large cohort of medication-free, deeply phenotyped MDD participants, patterns of brain alteration are defined in replicable and neurobiologically-based dimensions and offer the potential to predict treatment response at the individual level. International datasets are being shared from multi-ethnic community populations, first episode and recurrent MDD, which are medication-free, in a current depressive episode with prospective longitudinal treatment outcomes and in remission. Neuroimaging data consist of de-identified, individual, structural MRI and resting-state functional MRI with additional positron emission tomography (PET) data at specific sites. State-of-the-art analytic methods include automated image processing for extraction of anatomical and functional imaging variables, statistical harmonization of imaging variables to account for site and scanner variations, and semi-supervised machine learning methods that identify dominant patterns associated with MDD from neural structure and function in healthy participants.

RESULTS

We are applying an iterative process by defining the neural dimensions that characterise deeply phenotyped samples and then testing the dimensions in novel samples to assess specificity and reliability. Crucially, we aim to use machine learning methods to identify novel predictors of treatment response based on prospective longitudinal treatment outcome data, and we can externally validate the dimensions in fully independent sites.

CONCLUSION

We describe the consortium, imaging protocols and analytics using preliminary results. Our findings thus far demonstrate how datasets across many sites can be harmonized and constructively pooled to enable execution of this large-scale project.

摘要

背景

迄今为止,在个体层面上开发基于神经影像学的重度抑郁症(MDD)生物标志物的努力受到限制。由于目前的诊断标准是基于症状的,MDD被认为是一种疾病,而不是一种具有已知病因的疾病;此外,神经测量结果通常受到药物状态和异质症状状态的影响。

方法

我们描述了一个联盟,通过新颖的多维坐标系(COORDINATE-MDD)的维度来量化神经解剖和神经功能的异质性。在一个无药物、深度表型 MDD 参与者的大队列中,利用成像调和与机器学习方法,定义了可复制和神经生物学基础的大脑改变模式,并具有预测个体水平治疗反应的潜力。正在从多民族社区人群、首发和复发性 MDD 中共享国际数据集,这些人群处于当前抑郁发作期,无药物治疗,具有前瞻性纵向治疗结局和缓解期。神经影像学数据包括匿名的个体结构 MRI 和静息态功能 MRI,以及特定部位的正电子发射断层扫描(PET)数据。最先进的分析方法包括用于提取解剖和功能成像变量的自动化图像处理、成像变量的统计调和以解释站点和扫描仪的变化、以及半监督机器学习方法,用于从健康参与者的神经结构和功能中识别与 MDD 相关的主要模式。

结果

我们正在通过定义特征深度表型样本的神经维度来应用迭代过程,然后在新样本中测试这些维度,以评估特异性和可靠性。至关重要的是,我们旨在使用机器学习方法基于前瞻性纵向治疗结局数据来识别治疗反应的新预测因子,并且我们可以在完全独立的站点外部验证这些维度。

结论

我们描述了联盟、成像协议和使用初步结果的分析。我们迄今为止的发现表明,如何调和和建设性地汇集来自许多站点的数据集,以实现这个大规模项目的执行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449b/9869598/7520a71285b1/12888_2022_4509_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索