Lu Ping, Wu Yan, Bai Ruoxuan, Jiang Ke, Xu Fangxu, Zhao Hongxin
Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
Liaoning Province Key Laboratory of Cordyceps Militaris with Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, China.
Biotechnol Notes. 2022 Nov 2;3:79-87. doi: 10.1016/j.biotno.2022.10.002. eCollection 2022.
Dark fermentation is considered as one of the most practical biological hydrogen production methods. However, current productivity and yield are still not economically viable for industrial applications. This biological process must be improved through multiple strategies, of which screening for more effective microbial strains is an important aspect. Here, based on the hydrogen production pathway of , we describe three strategies to improve hydrogen production by effectively regulating the anaerobic metabolism of through genetic modification. This protocol describes in detail how to obtain NADH dehydrogenase-damaged mutants and overexpress Nad synthase genes using the CRISPR-Cas9 gene editing system. In addition, the overexpression of small RNA RyhB was achieved and verified by Northern Blot. This protocol is of great significance for the study of genetic engineering operation in and other bacteria, and also provides theoretical guidance and technical support for the study of biological hydrogen production.
暗发酵被认为是最实用的生物制氢方法之一。然而,目前的生产率和产量在工业应用中仍不具有经济可行性。必须通过多种策略来改进这一生物过程,其中筛选更有效的微生物菌株是一个重要方面。在此,基于[具体微生物名称]的产氢途径,我们描述了三种通过基因改造有效调节[具体微生物名称]的厌氧代谢来提高产氢的策略。本方案详细描述了如何使用CRISPR-Cas9基因编辑系统获得NADH脱氢酶受损突变体并过表达Nad合酶基因。此外,通过Northern Blot实现并验证了小RNA RyhB的过表达。本方案对于[具体微生物名称]和其他细菌的基因工程操作研究具有重要意义,也为[具体微生物名称]生物制氢研究提供了理论指导和技术支持。