Suppr超能文献

通过在大肠杆菌中进行多策略代谢工程来提高 NAD 的产量。

Improving the production of NAD via multi-strategy metabolic engineering in Escherichia coli.

机构信息

Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Lab of Brewing Microbiology and Applied Enzymology, Jingnan University, Wuxi, 214122, China.

Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Lab of Brewing Microbiology and Applied Enzymology, Jingnan University, Wuxi, 214122, China; Suqian Jiangnan University Institute of Industrial Technology, Suqian, 223800, China.

出版信息

Metab Eng. 2021 Mar;64:122-133. doi: 10.1016/j.ymben.2021.01.012. Epub 2021 Feb 9.

Abstract

Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme involved in numerous physiological processes. As an attractive product in the industrial field, NAD also plays an important role in oxidoreductase-catalyzed reactions, drug synthesis, and the treatment of diseases, such as dementia, diabetes, and vascular dysfunction. Currently, although the biotechnology to construct NAD-overproducing strains has been developed, limited regulation and low productivity still hamper its use on large scales. Here, we describe multi-strategy metabolic engineering to address the NAD-production bottleneck in E. coli. First, blocking the degradation pathway of NAD(H) increased the accumulation of NAD by 39%. Second, key enzymes involved in the Preiss-Handler pathway of NAD synthesis were overexpressed and led to a 221% increase in the NAD concentration. Third, the PRPP synthesis module and Preiss-Handler pathway were combined to strengthen the precursors supply, which resulted in enhancement of NAD content by 520%. Fourth, increasing the ATP content led to an increase in the concentration of NAD by 170%. Finally, with the combination of all above strategies, a strain with a high yield of NAD was constructed, with the intracellular NAD concentration reaching 26.9 μmol/g DCW, which was 834% that of the parent strain. This study presents an efficient design of an NAD-producing strain through global regulation metabolic engineering.

摘要

烟酰胺腺嘌呤二核苷酸(NAD)是一种参与许多生理过程的必需辅酶。作为工业领域有吸引力的产品,NAD 在氧化还原酶催化反应、药物合成以及痴呆、糖尿病和血管功能障碍等疾病的治疗中也发挥着重要作用。目前,尽管构建 NAD 高产菌株的生物技术已经发展起来,但有限的调控和低产量仍然限制了其大规模应用。在这里,我们描述了多种策略的代谢工程,以解决大肠杆菌中 NAD 生产的瓶颈问题。首先,阻断 NAD(H)的降解途径可使 NAD 的积累增加 39%。其次,过表达参与 NAD 合成的 Preiss-Handler 途径的关键酶,可使 NAD 浓度增加 221%。第三,将 PRPP 合成模块与 Preiss-Handler 途径相结合,加强前体供应,可使 NAD 含量增加 520%。第四,增加 ATP 含量可使 NAD 浓度增加 170%。最后,通过整合所有上述策略,构建了一种 NAD 产量高的菌株,其胞内 NAD 浓度达到 26.9 μmol/g DCW,是出发菌株的 834%。本研究通过全局调控代谢工程,为 NAD 生产菌株的设计提供了一种高效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验