Suppr超能文献

使用弹性网络逻辑回归预测数学干预反应的实施情况。

Predicting implementation of response to intervention in math using elastic net logistic regression.

作者信息

Wang Qi, Hall Garret J, Zhang Qian, Comella Sara

机构信息

Department of Educational Psychology and Learning Systems, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States.

出版信息

Front Psychol. 2024 Oct 2;15:1410396. doi: 10.3389/fpsyg.2024.1410396. eCollection 2024.

Abstract

INTRODUCTION

The primary objective of this study was to identify variables that significantly influence the implementation of math Response to Intervention (RTI) at the school level, utilizing the ECLS-K: 2011 dataset.

METHODS

Due to missing values in the original dataset, a Random Forest algorithm was employed for data imputation, generating a total of 10 imputed datasets. Elastic net logistic regression, combined with nested cross-validation, was applied to each imputed dataset, potentially resulting in 10 models with different variables. Variables for the models derived from the imputed datasets were selected using four methods, leading to four candidate models for final selection. These models were assessed based on their performance of prediction accuracy, culminating in the selection of the final model that outperformed the others.

RESULTS AND DISCUSSION

Method and Method emerged as the most effective, achieving a balanced accuracy of 0.852. The ultimate model selected relevant variables that effectively predicted RTI. The predictive accuracy of the final model was also demonstrated by the receiver operating characteristic (ROC) plot and the corresponding area under the curve (AUC) value, indicating its ability to accurately forecast math RTI implementation in schools for the following year.

摘要

引言

本研究的主要目的是利用2011年的早期儿童纵向研究幼儿园队列(ECLS-K)数据集,确定在学校层面显著影响数学回应干预(RTI)实施的变量。

方法

由于原始数据集中存在缺失值,采用随机森林算法进行数据插补,共生成10个插补数据集。将弹性网逻辑回归与嵌套交叉验证相结合,应用于每个插补数据集,可能会得到10个具有不同变量的模型。使用四种方法从插补数据集中导出模型的变量,从而得到四个候选模型以供最终选择。根据预测准确性对这些模型进行评估,最终选出表现优于其他模型的最终模型。

结果与讨论

方法和方法被证明是最有效的,平衡准确率达到0.852。最终模型选择了能够有效预测RTI的相关变量。最终模型的预测准确性也通过接收器操作特征(ROC)图和相应的曲线下面积(AUC)值得到了证明,表明其能够准确预测下一年学校数学RTI的实施情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ac/11480053/cf148fcc78e0/fpsyg-15-1410396-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验