Suppr超能文献

人工智能与沟通科学与障碍未来:文献计量与可视化分析。

Artificial Intelligence and the Future of Communication Sciences and Disorders: A Bibliometric and Visualization Analysis.

机构信息

Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China.

National Research Centre for Language and Well-being, Shanghai, China.

出版信息

J Speech Lang Hear Res. 2024 Nov 7;67(11):4369-4390. doi: 10.1044/2024_JSLHR-24-00157. Epub 2024 Oct 17.

Abstract

PURPOSE

As artificial intelligence (AI) takes an increasingly prominent role in health care, a growing body of research is being dedicated to its application in the investigation of communication sciences and disorders (CSD). This study aims to provide a comprehensive overview, serving as a valuable resource for researchers, developers, and professionals seeking to comprehend the evolving landscape of AI in CSD research.

METHOD

We conducted a bibliometric analysis of AI-based research in the discipline of CSD published up to December 2023. Utilizing the Web of Science and Scopus databases, we identified 15,035 publications, with 4,375 meeting our inclusion criteria. Based on the bibliometric data, we examined publication trends and patterns, characteristics of research activities, and research hotspot tendencies.

RESULTS

From 1985 onwards, there has been a consistent annual increase in publications, averaging 16.51%, notably surging from 2012 to 2023. The primary communication disorders studied include autism, aphasia, dysarthria, Parkinson's disease, and Alzheimer's disease. Noteworthy AI models instantiated in CSD research encompass support vector machine, convolutional neural network, and hidden Markov model, among others.

CONCLUSIONS

Compared to AI applications in other fields, the adoption of AI in CSD has lagged slightly behind. While CSD studies primarily use classical machine learning techniques, there is a growing trend toward the integration of deep learning methods. AI technology offers significant benefits for both research and clinical practice in CSD, but it also presents certain challenges. Moving forward, collaboration among technological, research, and clinical domains is essential to empower researchers and speech-language pathologists to effectively leverage AI technology for the study, diagnosis, assessment, and rehabilitation of CSD.

SUPPLEMENTAL MATERIAL

https://doi.org/10.23641/asha.27162564.

摘要

目的

随着人工智能(AI)在医疗保健领域的作用日益凸显,越来越多的研究致力于将其应用于沟通科学与障碍(CSD)的研究。本研究旨在提供全面概述,为研究人员、开发者和专业人员提供宝贵资源,帮助他们了解 AI 在 CSD 研究中的发展态势。

方法

我们对截至 2023 年 12 月在 CSD 领域开展的基于 AI 的研究进行了文献计量分析。我们利用 Web of Science 和 Scopus 数据库,共识别出 15035 篇出版物,其中 4375 篇符合纳入标准。基于文献计量数据,我们考察了出版物趋势和模式、研究活动的特点以及研究热点倾向。

结果

自 1985 年以来,出版物数量呈持续的逐年增长态势,平均增长率为 16.51%,尤其是从 2012 年到 2023 年呈显著增长态势。研究的主要沟通障碍包括自闭症、失语症、构音障碍、帕金森病和阿尔茨海默病。在 CSD 研究中实例化的有意义的 AI 模型包括支持向量机、卷积神经网络和隐马尔可夫模型等。

结论

与 AI 在其他领域的应用相比,CSD 对 AI 的采用略显滞后。虽然 CSD 研究主要使用经典的机器学习技术,但越来越倾向于集成深度学习方法。AI 技术为 CSD 的研究和临床实践带来了显著的益处,但也带来了一定的挑战。未来,技术、研究和临床领域之间的协作至关重要,有助于赋能研究人员和言语语言病理学家有效利用 AI 技术,用于 CSD 的研究、诊断、评估和康复。

补充材料

https://doi.org/10.23641/asha.27162564。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验