Suppr超能文献

蛋氨酸-SAM 代谢依赖性泛醌合成对于铁死亡诱导中 ROS 积累至关重要。

Methionine-SAM metabolism-dependent ubiquinone synthesis is crucial for ROS accumulation in ferroptosis induction.

机构信息

Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, Changchun, 130024, Jilin, China.

出版信息

Nat Commun. 2024 Oct 17;15(1):8971. doi: 10.1038/s41467-024-53380-5.

Abstract

Ferroptosis is a cell death modality in which iron-dependent lipid peroxides accumulate on cell membranes. Cysteine, a limiting substrate for the glutathione system that neutralizes lipid peroxidation and prevents ferroptosis, can be converted by cystine reduction or synthesized from methionine. However, accumulating evidence shows methionine-based cysteine synthesis fails to effectively rescue intracellular cysteine levels upon cystine deprivation and is unable to inhibit ferroptosis. Here, we report that methionine-based cysteine synthesis is tissue-specific. Unexpectedly, we find that rather than inhibiting ferroptosis, methionine in fact plays an essential role during cystine deprivation-induced ferroptosis. Methionine-derived S-adenosylmethionine (SAM) contributes to methylation-dependent ubiquinone synthesis, which leads to lipid peroxides accumulation and subsequent ferroptosis. Moreover, SAM supplementation synergizes with Imidazole Ketone Erastin in a tumor growth suppression mouse model. Inhibiting the enzyme that converts methionine to SAM protects heart tissue from Doxorubicin-induced and ferroptosis-driven cardiomyopathy. This study broadens our understanding about the intersection of amino acid metabolism and ferroptosis regulation, providing insight into the underlying mechanisms and suggesting the methionine-SAM axis is a promising therapeutic strategy to treat ferroptosis-related diseases.

摘要

铁死亡是一种依赖于铁的细胞死亡方式,其中细胞膜上积累了铁依赖性脂质过氧化物。半胱氨酸是谷胱甘肽系统的一种限制底物,可中和脂质过氧化并防止铁死亡,它可以通过胱氨酸还原或从蛋氨酸合成。然而,越来越多的证据表明,在胱氨酸剥夺时,基于蛋氨酸的半胱氨酸合成不能有效地挽救细胞内半胱氨酸水平,并且不能抑制铁死亡。在这里,我们报告基于蛋氨酸的半胱氨酸合成是组织特异性的。出乎意料的是,我们发现,蛋氨酸实际上在胱氨酸剥夺诱导的铁死亡过程中发挥了重要作用,而不是抑制铁死亡。蛋氨酸衍生的 S-腺苷甲硫氨酸(SAM)有助于依赖于甲基化的泛醌合成,导致脂质过氧化物积累和随后的铁死亡。此外,SAM 补充与 Imidazole Ketone Erastin 在肿瘤生长抑制小鼠模型中协同作用。抑制将蛋氨酸转化为 SAM 的酶可保护心脏组织免受多柔比星诱导的和铁死亡驱动的心肌病。这项研究拓宽了我们对氨基酸代谢和铁死亡调控交叉的理解,深入了解了潜在的机制,并表明蛋氨酸-SAM 轴是治疗与铁死亡相关疾病的有前途的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验