Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
Sci Rep. 2024 Oct 17;14(1):24372. doi: 10.1038/s41598-024-75616-6.
Neuronal ensemble activity entrained by local field potential (LFP) patterns underlies a variety of brain functions, including emotion, cognition, and pain perception. Recent advances in machine learning approaches may enable more effective methods for analyzing LFP patterns across multiple brain areas than conventional time-frequency analysis. In this study, we tested the performance of two machine learning algorithms, AlexNet and the Transformer models, to classify LFP patterns in eight pain-related brain regions before and during acetic acid-induced visceral pain behaviors. Over short time windows lasting several seconds, applying AlexNet to LFP power datasets, but not to raw time-series LFP traces from multiple brain areas, successfully achieved superior classification performance compared with simple LFP power analysis. Furthermore, applying the Transformer directly to the raw LFP traces achieved significantly superior classification performance than AlexNet when using LFP power datasets. These results demonstrate the utility of the Transformer in the analysis of neurophysiological signals, and pave the way for its future applications in the decoding of more complex neuronal activity patterns.
神经元集合活动通过局部场电位 (LFP) 模式进行调整,是多种大脑功能的基础,包括情绪、认知和疼痛感知。机器学习方法的最新进展可能使分析多个大脑区域的 LFP 模式的方法比传统的时频分析更有效。在这项研究中,我们测试了两种机器学习算法,AlexNet 和 Transformer 模型,以在乙酸诱导的内脏疼痛行为之前和期间对与疼痛相关的八个脑区的 LFP 模式进行分类。在持续数秒的短时间窗口内,将 AlexNet 应用于 LFP 功率数据集,但不适用于来自多个脑区的原始时间序列 LFP 迹线,与简单的 LFP 功率分析相比,成功实现了卓越的分类性能。此外,当使用 LFP 功率数据集时,直接将 Transformer 应用于原始 LFP 迹线,可实现比 AlexNet 更优异的分类性能。这些结果表明 Transformer 在神经生理信号分析中的实用性,并为其在更复杂的神经元活动模式解码中的未来应用铺平了道路。