Yanai Rin, Mitani Tomoki T, Susaki Etsuo A, Minamihisamatsu Takeharu, Shimojo Masafumi, Saito Yuri, Mizuma Hiroshi, Nitta Nobuhiro, Kaneda Daita, Hashizume Yoshio, Matsumoto Gen, Tanemura Kentaro, Zhang Ming-Rong, Higuchi Makoto, Ueda Hiroki R, Sahara Naruhiko
Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
Laboratory for Synthetic Biology, RIKEN BDR, Suita, Osaka, 565-0871, Japan.
Brain Commun. 2024 Sep 19;6(5):fcae326. doi: 10.1093/braincomms/fcae326. eCollection 2024.
Creating a mouse model that recapitulates human tau pathology is essential for developing strategies to intervene in tau-induced neurodegeneration. However, mimicking the pathological features seen in human pathology often involves a trade-off with artificial effects such as unexpected gene insertion and neurotoxicity from the expression system. To overcome these issues, we developed the rTKhomo mouse model by combining a transgenic CaMKII-tTA system with a P301L mutated 1N4R human tau knock-in at the locus with a C57BL/6J background. This model closely mimics human tau pathology, particularly in the hippocampal CA1 region, showing age-dependent tau accumulation, neuronal loss and neuroinflammation. Notably, whole-brain 3D staining and light-sheet microscopy revealed a spatial gradient of tau deposition from the entorhinal cortex to the hippocampus, similar to the spatial distribution of Braak neurofibrillary tangle staging. Furthermore, [F]PM-PBB3 positron emission tomography imaging enabled the quantification and live monitoring of tau deposition. The rTKhomo mouse model shows potential as a promising next-generation preclinical tool for exploring the mechanisms of tauopathy and for developing interventions targeting the spatial progression of tau pathology.
创建一个能够重现人类tau蛋白病理特征的小鼠模型对于制定干预tau蛋白诱导的神经退行性变的策略至关重要。然而,模拟人类病理学中所见的病理特征往往需要在人工效应(如意外的基因插入和表达系统的神经毒性)之间进行权衡。为了克服这些问题,我们通过将转基因CaMKII-tTA系统与P301L突变的1N4R人tau蛋白在C57BL/6J背景下的基因座敲入相结合,开发了rTKhomo小鼠模型。该模型紧密模拟人类tau蛋白病理特征,特别是在海马CA1区,表现出年龄依赖性的tau蛋白积累、神经元丢失和神经炎症。值得注意的是,全脑3D染色和光片显微镜显示了从内嗅皮质到海马的tau蛋白沉积的空间梯度,类似于Braak神经原纤维缠结分期的空间分布。此外,[F]PM-PBB3正电子发射断层扫描成像能够对tau蛋白沉积进行定量和实时监测。rTKhomo小鼠模型显示出作为一种有前途的下一代临床前工具的潜力,用于探索tau蛋白病的机制以及开发针对tau蛋白病理空间进展的干预措施。