Suppr超能文献

机器学习用于在氨基甲酸乙酯诱导的肺损伤小鼠模型中对肺胶原蛋白进行自动分类。

Machine learning for automated classification of lung collagen in a urethane-induced lung injury mouse model.

作者信息

Alnafisah Khalid Hamad, Ranjan Amit, Sahu Sushant P, Chen Jianhua, Alhejji Sarah Mohammad, Noël Alexandra, Gartia Manas Ranjan, Mukhopadhyay Supratik

机构信息

Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA.

Center for Computation & Technology and Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.

出版信息

Biomed Opt Express. 2024 Sep 23;15(10):5980-5998. doi: 10.1364/BOE.527972. eCollection 2024 Oct 1.

Abstract

Dysregulation of lung tissue collagen level plays a vital role in understanding how lung diseases progress. However, traditional scoring methods rely on manual histopathological examination introducing subjectivity and inconsistency into the assessment process. These methods are further hampered by inter-observer variability, lack of quantification, and their time-consuming nature. To mitigate these drawbacks, we propose a machine learning-driven framework for automated scoring of lung collagen content. Our study begins with the collection of a lung slide image dataset from adult female mice using second harmonic generation (SHG) microscopy. In our proposed approach, first, we manually extracted features based on the 46 statistical parameters of fibrillar collagen. Subsequently, we pre-processed the images and utilized a pre-trained VGG16 model to uncover hidden features from pre-processed images. We then combined both image and statistical features to train various machine learning and deep neural network models for classification tasks. We employed advanced unsupervised techniques like K-means, principal component analysis (PCA), t-distributed stochastic neighbour embedding (t-SNE), and uniform manifold approximation and projection (UMAP) to conduct thorough image analysis for lung collagen content. Also, the evaluation of the trained models using the collagen data includes both binary and multi-label classification to predict lung cancer in a urethane-induced mouse model. Experimental validation of our proposed approach demonstrates promising results. We obtained an average accuracy of 83% and an area under the receiver operating characteristic curve (ROC AUC) values of 0.96 through the use of a support vector machine (SVM) model for binary categorization tasks. For multi-label classification tasks, to quantify the structural alteration of collagen, we attained an average accuracy of 73% and ROC AUC values of 1.0, 0.38, 0.95, and 0.86 for control, baseline, treatment_1, and treatment_2 groups, respectively. Our findings provide significant potential for enhancing diagnostic accuracy, understanding disease mechanisms, and improving clinical practice using machine learning and deep learning models.

摘要

肺组织胶原蛋白水平的失调在理解肺部疾病的进展过程中起着至关重要的作用。然而,传统的评分方法依赖于人工组织病理学检查,这在评估过程中引入了主观性和不一致性。这些方法还受到观察者间差异、缺乏量化以及耗时性的进一步阻碍。为了减轻这些缺点,我们提出了一种机器学习驱动的框架,用于自动评估肺胶原蛋白含量。我们的研究首先使用二次谐波产生(SHG)显微镜从成年雌性小鼠收集肺切片图像数据集。在我们提出的方法中,首先,我们基于纤维状胶原蛋白的46个统计参数手动提取特征。随后,我们对图像进行预处理,并利用预训练的VGG16模型从预处理图像中发现隐藏特征。然后,我们将图像特征和统计特征相结合,训练各种机器学习和深度神经网络模型用于分类任务。我们采用了先进的无监督技术,如K均值、主成分分析(PCA)、t分布随机邻域嵌入(t-SNE)和均匀流形逼近与投影(UMAP),对肺胶原蛋白含量进行全面的图像分析。此外,使用胶原蛋白数据对训练模型进行的评估包括二元和多标签分类,以预测尿烷诱导的小鼠模型中的肺癌。我们提出的方法的实验验证显示出有希望的结果。通过使用支持向量机(SVM)模型进行二元分类任务,我们获得了83%的平均准确率和0.96的受试者工作特征曲线下面积(ROC AUC)值。对于多标签分类任务,为了量化胶原蛋白的结构改变,我们分别获得了对照组、基线组、治疗_1组和治疗_2组73%的平均准确率以及1.0、0.38、0.95和0.86的ROC AUC值。我们的研究结果为使用机器学习和深度学习模型提高诊断准确性、理解疾病机制以及改善临床实践提供了巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aa0/11482176/c4af848c31ca/boe-15-10-5980-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验