Suppr超能文献

基于机器学习在二次谐波生成图像上对人交界性卵巢癌进行快速诊断

Machine learning-based rapid diagnosis of human borderline ovarian cancer on second-harmonic generation images.

作者信息

Wang Guangxing, Sun Yang, Jiang Shuisen, Wu Guizhu, Liao Wenliang, Chen Yuwei, Lin Zexi, Liu Zhiyi, Zhuo Shuangmu

机构信息

School of Science, Jimei University, Xiamen 361021, China.

State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.

出版信息

Biomed Opt Express. 2021 Aug 16;12(9):5658-5669. doi: 10.1364/BOE.429918. eCollection 2021 Sep 1.

Abstract

Regarding growth pattern and cytological characteristics, borderline ovarian tumors fall between benign and malignant, but they tend to develop malignancy. Currently, it is difficult to accurately diagnose ovarian cancer using common medical imaging methods, and histopathological examination is routinely used to obtain a definitive diagnosis. However, such examination requires experienced pathologists, being labor-intensive, time-consuming, and possibly leading to interobserver bias. By using second-harmonic generation imaging and k-nearest neighbors classifier in conjunction with automated machine learning tree-based pipeline optimization tool, we developed a computer-aided diagnosis method to classify ovarian tissues as being malignant, benign, borderline, and normal, obtaining areas under the receiver operating characteristic curve of 1.00, 0.99, 0.98, and 0.97, respectively. These results suggest that diagnosis based on second-harmonic generation images and machine learning can support the rapid and accurate detection of ovarian cancer in clinical practice.

摘要

关于生长模式和细胞学特征,卵巢交界性肿瘤介于良性和恶性之间,但它们有发展为恶性的倾向。目前,使用常见的医学成像方法难以准确诊断卵巢癌,组织病理学检查通常用于获得明确诊断。然而,这种检查需要经验丰富的病理学家,劳动强度大、耗时,并且可能导致观察者间的偏差。通过结合使用二次谐波生成成像和k近邻分类器以及基于自动机器学习树的管道优化工具,我们开发了一种计算机辅助诊断方法,将卵巢组织分类为恶性、良性、交界性和正常,相应的受试者工作特征曲线下面积分别为1.00、0.99、0.98和0.97。这些结果表明,基于二次谐波生成图像和机器学习的诊断可以支持临床实践中卵巢癌的快速准确检测。

相似文献

1
Machine learning-based rapid diagnosis of human borderline ovarian cancer on second-harmonic generation images.
Biomed Opt Express. 2021 Aug 16;12(9):5658-5669. doi: 10.1364/BOE.429918. eCollection 2021 Sep 1.
3
Ovarian cancer identification technology based on deep learning and second harmonic generation imaging.
J Biophotonics. 2024 Sep;17(9):e202400200. doi: 10.1002/jbio.202400200. Epub 2024 Jul 2.
4
Automated classification of multiphoton microscopy images of ovarian tissue using deep learning.
J Biomed Opt. 2018 Jun;23(6):1-7. doi: 10.1117/1.JBO.23.6.066002.
5
Evaluation of machine learning methods with Fourier Transform features for classifying ovarian tumors based on ultrasound images.
PLoS One. 2019 Jul 26;14(7):e0219388. doi: 10.1371/journal.pone.0219388. eCollection 2019.
8
Texture analysis applied to second harmonic generation image data for ovarian cancer classification.
J Biomed Opt. 2014 Sep;19(9):096007. doi: 10.1117/1.JBO.19.9.096007.
9
Evolutionary algorithm-based classifier parameter tuning for automatic ovarian cancer tissue characterization and classification.
Ultraschall Med. 2014 Jun;35(3):237-45. doi: 10.1055/s-0032-1330336. Epub 2012 Dec 20.
10
MRI-Based Machine Learning for Differentiating Borderline From Malignant Epithelial Ovarian Tumors: A Multicenter Study.
J Magn Reson Imaging. 2020 Sep;52(3):897-904. doi: 10.1002/jmri.27084. Epub 2020 Feb 11.

引用本文的文献

2
Machine learning for automated classification of lung collagen in a urethane-induced lung injury mouse model.
Biomed Opt Express. 2024 Sep 23;15(10):5980-5998. doi: 10.1364/BOE.527972. eCollection 2024 Oct 1.
3
On the quantitative analysis of lamellar collagen arrangement with second-harmonic generation imaging.
Biomed Opt Express. 2024 Mar 29;15(4):2666-2680. doi: 10.1364/BOE.516817. eCollection 2024 Apr 1.
4
Deep learning in ovarian cancer diagnosis: a comprehensive review of various imaging modalities.
Pol J Radiol. 2024 Jan 22;89:e30-e48. doi: 10.5114/pjr.2024.134817. eCollection 2024.
5
Use and application of organ-on-a-chip platforms in cancer research.
J Cell Commun Signal. 2023 Dec;17(4):1163-1179. doi: 10.1007/s12079-023-00790-7. Epub 2023 Nov 30.
6
7
Current Understanding on Why Ovarian Cancer Is Resistant to Immune Checkpoint Inhibitors.
Int J Mol Sci. 2023 Jun 29;24(13):10859. doi: 10.3390/ijms241310859.
8
A Deep Learning Framework for the Prediction and Diagnosis of Ovarian Cancer in Pre- and Post-Menopausal Women.
Diagnostics (Basel). 2023 May 11;13(10):1703. doi: 10.3390/diagnostics13101703.
9
Nonlinear microscopy and deep learning classification for mammary gland microenvironment studies.
Biomed Opt Express. 2023 Apr 21;14(5):2181-2195. doi: 10.1364/BOE.487087. eCollection 2023 May 1.
10
CT-based machine learning radiomics predicts CCR5 expression level and survival in ovarian cancer.
J Ovarian Res. 2023 Jan 3;16(1):1. doi: 10.1186/s13048-022-01089-8.

本文引用的文献

1
3
Fibrillar Collagen Quantification With Curvelet Transform Based Computational Methods.
Front Bioeng Biotechnol. 2020 Apr 21;8:198. doi: 10.3389/fbioe.2020.00198. eCollection 2020.
5
Migration dynamics of ovarian epithelial cells on micro-fabricated image-based models of normal and malignant stroma.
Acta Biomater. 2019 Dec;100:92-104. doi: 10.1016/j.actbio.2019.09.037. Epub 2019 Sep 27.
6
Scaling tree-based automated machine learning to biomedical big data with a feature set selector.
Bioinformatics. 2020 Jan 1;36(1):250-256. doi: 10.1093/bioinformatics/btz470.
7
Ovarian cancer in the world: epidemiology and risk factors.
Int J Womens Health. 2019 Apr 30;11:287-299. doi: 10.2147/IJWH.S197604. eCollection 2019.
9
Extracellular matrix: The driving force of mammalian diseases.
Matrix Biol. 2018 Oct;71-72:1-9. doi: 10.1016/j.matbio.2018.03.023. Epub 2018 Apr 3.
10
Predicting cancer outcomes from histology and genomics using convolutional networks.
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E2970-E2979. doi: 10.1073/pnas.1717139115. Epub 2018 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验