Suppr超能文献

发形天神:由可功能化突出端驱动的 DNA 纳米结构构象变化分析。

Hairygami: Analysis of DNA Nanostructures' Conformational Change Driven by Functionalizable Overhangs.

机构信息

School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States.

School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States.

出版信息

ACS Nano. 2024 Oct 29;18(43):30004-30016. doi: 10.1021/acsnano.4c10796. Epub 2024 Oct 18.

Abstract

DNA origami is a widely used method to construct nanostructures by self-assembling designed DNA strands. These structures are often used as "pegboards" for templated assembly of proteins, gold nanoparticles, aptamers, and other molecules, with applications ranging from therapeutics and diagnostics to plasmonics and photonics. Imaging these structures using atomic force microscopy (AFM) or transmission electron microscope (TEM) does not capture their full conformation ensemble as they only show their shape flattened on a surface. However, certain conformations of the nanostructure can position guest molecules into distances unaccounted for in their intended design, thus leading to spurious interactions between guest molecules that are designed to be separated. Here, we use molecular dynamics simulations to capture a conformational ensemble of two-dimensional (2D) DNA origami tiles and show that introducing single-stranded overhangs, which are typically used for functionalization of the origami with guest molecules, induces a curvature of the tile structure in the bulk. We show that the shape deformation is of entropic origin, with implications for the design of robust DNA origami breadboards as well as a potential approach to modulate structure shape by introducing overhangs. We then verify experimentally that the DNA overhangs introduce curvature into the DNA origami tiles under divalent as well as monovalent salt buffer conditions. We further experimentally verify that DNA origami functionalized with attached proteins also experiences such induced curvature. We provide the developed simulation code implementing the enhanced sampling to characterize the conformational space of DNA origami as open source software.

摘要

DNA 折纸术是一种通过自组装设计的 DNA 链来构建纳米结构的广泛应用方法。这些结构通常用作模板组装蛋白质、金纳米粒子、适体和其他分子的“钉板”,其应用范围从治疗和诊断到等离子体和光子学。使用原子力显微镜 (AFM) 或透射电子显微镜 (TEM) 对这些结构进行成像并不能捕捉到它们的完整构象集合,因为它们仅显示其在表面上压扁的形状。然而,纳米结构的某些构象可以将客体分子定位在其预期设计中未考虑到的距离,从而导致设计为分离的客体分子之间产生虚假相互作用。在这里,我们使用分子动力学模拟来捕获二维 (2D) DNA 折纸瓦片的构象集合,并表明引入单链突出端(通常用于用客体分子对折纸进行功能化)会在块状物中诱导瓦片结构的曲率。我们表明,形状变形是由熵引起的,这对设计稳健的 DNA 折纸基板以及通过引入突出端来调节结构形状具有潜在意义。然后,我们通过实验验证了 DNA 突出端在二价和单价盐缓冲条件下会使 DNA 折纸瓦片产生曲率。我们进一步通过实验验证了附着有蛋白质的 DNA 折纸也会经历这种诱导的曲率。我们提供了实现增强采样以表征 DNA 折纸构象空间的开发模拟代码,作为开源软件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验