Suppr超能文献

利用DNA折纸技术在纳米尺度上实现机械挫折感。

Realizing mechanical frustration at the nanoscale using DNA origami.

作者信息

Madhvacharyula Anirudh S, Li Ruixin, Swett Alexander A, Du Yancheng, Seo Seongmin, Simmel Friedrich C, Choi Jong Hyun

机构信息

School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.

School of Materials Engineering, Purdue University, West Lafayette, IN, USA.

出版信息

Nat Commun. 2025 Jun 4;16(1):5164. doi: 10.1038/s41467-025-60492-z.

Abstract

Structural designs inspired by physical and biological systems have been previously utilized to develop mechanical metamaterials with enhanced properties based on clever geometric arrangement of constituent building blocks. Here, we use the DNA origami method to realize a nanoscale metastructure exhibiting mechanical frustration, a counterpart of the well-known phenomenon of magnetic frustration. By selectively actuating reconfigurable struts, it adopts either frustrated or non-frustrated states, each characterized by distinct free energy profiles. While the non-frustrated state distributes the strain homogeneously, the frustrated mode concentrates it at a specific location. Molecular dynamics simulations reconcile the contrasting behaviors and provide insights into underlying mechanics. We explore the design space further by tailoring responses through structural modifications. Our work combines programmable DNA self-assembly with mechanical design principles to overcome engineering limitations encountered at the macroscale to design dynamic, deformable nanostructures with potential applications in elastic energy storage, nanomechanical computation, and allosteric mechanisms in DNA-based nanomachinery.

摘要

受物理和生物系统启发的结构设计此前已被用于开发机械超材料,这些超材料通过巧妙地排列组成构件来增强性能。在此,我们使用DNA折纸方法实现了一种表现出机械阻挫的纳米级亚结构,这是著名的磁阻挫现象的对应物。通过选择性地驱动可重构支柱,它可以呈现阻挫或非阻挫状态,每种状态都具有独特的自由能分布特征。非阻挫状态下应变均匀分布,而阻挫模式则将应变集中在特定位置。分子动力学模拟解释了这些截然不同的行为,并提供了对潜在力学原理的见解。我们通过结构修改来调整响应,进一步探索设计空间。我们的工作将可编程的DNA自组装与机械设计原理相结合,以克服在宏观尺度上遇到的工程限制,从而设计出具有在弹性能量存储、纳米机械计算以及基于DNA的纳米机器中的变构机制等潜在应用的动态、可变形纳米结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa0/12134127/1b17c6b5852e/41467_2025_60492_Fig1_HTML.jpg

相似文献

1
Realizing mechanical frustration at the nanoscale using DNA origami.
Nat Commun. 2025 Jun 4;16(1):5164. doi: 10.1038/s41467-025-60492-z.
2
Probing the Mechanical Properties of DNA Nanostructures with Metadynamics.
ACS Nano. 2022 Jun 28;16(6):8784-8797. doi: 10.1021/acsnano.1c08999. Epub 2022 May 17.
3
Nanomechanical molecular devices made of DNA origami.
Acc Chem Res. 2014 Jun 17;47(6):1742-9. doi: 10.1021/ar400328v. Epub 2014 Apr 29.
4
Self-assembled Nucleic Acid Nanostructures for Biomedical Applications.
Curr Top Med Chem. 2022;22(8):652-667. doi: 10.2174/1568026622666220321140729.
5
A Practical Guide to Molecular Dynamics Simulations of DNA Origami Systems.
Methods Mol Biol. 2018;1811:209-229. doi: 10.1007/978-1-4939-8582-1_15.
6
Quantitative Analysis of Resistance to Deformation of the DNA Origami Framework Supported by Struts.
ACS Appl Bio Mater. 2024 Feb 19;7(2):1311-1316. doi: 10.1021/acsabm.3c01270. Epub 2024 Feb 1.
7
Force-Induced Unravelling of DNA Origami.
ACS Nano. 2018 Jul 24;12(7):6734-6747. doi: 10.1021/acsnano.8b01844. Epub 2018 Jun 18.
8
Construction of Reconfigurable and Polymorphic DNA Origami Assemblies with Coiled-Coil Patches and Patterns.
Adv Sci (Weinh). 2024 May;11(20):e2307257. doi: 10.1002/advs.202307257. Epub 2024 Mar 8.
9
Create Nanoscale Patterns with DNA Origami.
Small. 2019 Jun;15(26):e1805554. doi: 10.1002/smll.201805554. Epub 2019 Apr 24.
10
Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.
J Am Chem Soc. 2016 Jun 22;138(24):7733-40. doi: 10.1021/jacs.6b03966. Epub 2016 Jun 9.

本文引用的文献

1
Hairygami: Analysis of DNA Nanostructures' Conformational Change Driven by Functionalizable Overhangs.
ACS Nano. 2024 Oct 29;18(43):30004-30016. doi: 10.1021/acsnano.4c10796. Epub 2024 Oct 18.
3
Diamond-lattice photonic crystals assembled from DNA origami.
Science. 2024 May 17;384(6697):781-785. doi: 10.1126/science.adl2733. Epub 2024 May 16.
5
Space-tiled colloidal crystals from DNA-forced shape-complementary polyhedra pairing.
Science. 2024 Jan 19;383(6680):312-319. doi: 10.1126/science.adj1021. Epub 2024 Jan 18.
6
A DNA turbine powered by a transmembrane potential across a nanopore.
Nat Nanotechnol. 2024 Mar;19(3):338-344. doi: 10.1038/s41565-023-01527-8. Epub 2023 Oct 26.
7
Ultrastrong colloidal crystal metamaterials engineered with DNA.
Sci Adv. 2023 Sep 29;9(39):eadj8103. doi: 10.1126/sciadv.adj8103.
8
Mechanics of dynamic and deformable DNA nanostructures.
Chem Sci. 2023 Jul 6;14(30):8018-8046. doi: 10.1039/d3sc01793a. eCollection 2023 Aug 2.
9
Harnessing a paper-folding mechanism for reconfigurable DNA origami.
Nature. 2023 Jul;619(7968):78-86. doi: 10.1038/s41586-023-06181-7. Epub 2023 Jul 5.
10
Thermally reversible pattern formation in arrays of molecular rotors.
Nanoscale. 2023 May 11;15(18):8356-8365. doi: 10.1039/d2nr05813h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验