Madhvacharyula Anirudh S, Li Ruixin, Swett Alexander A, Du Yancheng, Seo Seongmin, Simmel Friedrich C, Choi Jong Hyun
School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
School of Materials Engineering, Purdue University, West Lafayette, IN, USA.
Nat Commun. 2025 Jun 4;16(1):5164. doi: 10.1038/s41467-025-60492-z.
Structural designs inspired by physical and biological systems have been previously utilized to develop mechanical metamaterials with enhanced properties based on clever geometric arrangement of constituent building blocks. Here, we use the DNA origami method to realize a nanoscale metastructure exhibiting mechanical frustration, a counterpart of the well-known phenomenon of magnetic frustration. By selectively actuating reconfigurable struts, it adopts either frustrated or non-frustrated states, each characterized by distinct free energy profiles. While the non-frustrated state distributes the strain homogeneously, the frustrated mode concentrates it at a specific location. Molecular dynamics simulations reconcile the contrasting behaviors and provide insights into underlying mechanics. We explore the design space further by tailoring responses through structural modifications. Our work combines programmable DNA self-assembly with mechanical design principles to overcome engineering limitations encountered at the macroscale to design dynamic, deformable nanostructures with potential applications in elastic energy storage, nanomechanical computation, and allosteric mechanisms in DNA-based nanomachinery.
受物理和生物系统启发的结构设计此前已被用于开发机械超材料,这些超材料通过巧妙地排列组成构件来增强性能。在此,我们使用DNA折纸方法实现了一种表现出机械阻挫的纳米级亚结构,这是著名的磁阻挫现象的对应物。通过选择性地驱动可重构支柱,它可以呈现阻挫或非阻挫状态,每种状态都具有独特的自由能分布特征。非阻挫状态下应变均匀分布,而阻挫模式则将应变集中在特定位置。分子动力学模拟解释了这些截然不同的行为,并提供了对潜在力学原理的见解。我们通过结构修改来调整响应,进一步探索设计空间。我们的工作将可编程的DNA自组装与机械设计原理相结合,以克服在宏观尺度上遇到的工程限制,从而设计出具有在弹性能量存储、纳米机械计算以及基于DNA的纳米机器中的变构机制等潜在应用的动态、可变形纳米结构。