Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium.
Nanoscale. 2024 Nov 13;16(44):20542-20555. doi: 10.1039/d4nr01397b.
Designing iron oxide nanoparticles (IONPs) to effectively combine magnetic hyperthermia (MH) and photothermia (PTT) in one IONP formulation presents a significant challenge to ensure a multimodal therapy allowing the adaptation of the treatment to each patient. Recent research has highlighted the influence of factors such as the size, shape, and amount of defects on both therapeutic approaches. In this study, 20-25 nm spherical IONPs with a spinel composition were synthesized by adapting the protocol of the thermal decomposition method to control the amount of defects. By tuning different synthesis parameters such as the precursor nature, the introduction of a well-known oxidizing agent, dibenzylether (DBE), in the reaction medium, the heating rate and duration and the introduction of a nucleation step, we thus established two different synthesis protocols, one involving the use of a small amount of DBE leading to IONPs with only a few defects and another that took an optimized route to oxidize the wüstite nuclei during the IONP growth and led to IONPs exhibiting more structural and oxygen defects. IONPs exhibiting fewer defects showed enhanced MH and PTT heating values even when immobilized in a matrix, despite a decrease in MH heating values showing that they release mainly heat through the Brownian mechanism. These MH measurements have also confirmed that defects play a key role in enhancing Néel relaxation. PTT measurements demonstrated higher heating values with IONPs with fewer defects and a correlation between Urbach energy and SAR values suggesting an impact of vacancy defects on PTT performances. Therefore, IONPs exhibiting fewer defects under our synthesis conditions appear as suitable IONPs to combine both MH and PTT treatments with high performances. These findings pave the way for promising applications in combined therapies for cancer treatment.
设计氧化铁纳米粒子 (IONP),使其在一种 IONP 制剂中有效结合磁热疗 (MH) 和光热疗 (PTT),这对确保多模态治疗提出了重大挑战,使治疗能够适应每个患者。最近的研究强调了大小、形状和缺陷数量等因素对这两种治疗方法的影响。在这项研究中,通过调整热分解方法的协议来控制缺陷的数量,合成了具有尖晶石组成的 20-25nm 球形 IONP。通过调整不同的合成参数,如前体性质、在反应介质中引入众所周知的氧化剂二苯醚 (DBE)、加热速率和持续时间以及引入成核步骤,我们因此建立了两种不同的合成方案,一种涉及使用少量 DBE,导致 IONP 只有少量缺陷,另一种则采用优化的路线在 IONP 生长过程中氧化方铁矿核,导致 IONP 表现出更多的结构和氧缺陷。尽管固定在基质中时 MH 加热值降低,但表现出较少缺陷的 IONP 显示出增强的 MH 和 PTT 加热值,这表明它们主要通过布朗运动机制释放热量。这些 MH 测量还证实,缺陷在增强奈耳弛豫中起关键作用。PTT 测量显示,具有较少缺陷的 IONP 具有更高的加热值,并且 Urbach 能量和 SAR 值之间存在相关性,表明空位缺陷对 PTT 性能有影响。因此,在我们的合成条件下表现出较少缺陷的 IONP 似乎是结合 MH 和 PTT 治疗的合适 IONP,具有高性能。这些发现为癌症治疗联合治疗的有前途的应用铺平了道路。
Materials (Basel). 2020-10-18
ACS Appl Mater Interfaces. 2019-10-25