Griffin Liam P, Streit Tim-Niclas, Sievers Robin, Aldridge Simon, Gomila Rosa M, Frontera Antonio, Malischewski Moritz
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
Freie Universität Berlin, Institut für Anorganische Chemie, Fabeckstraße 34-36, D-14195 Berlin, Germany.
J Am Chem Soc. 2024 Oct 30;146(43):29877-29882. doi: 10.1021/jacs.4c11901. Epub 2024 Oct 18.
Complexation of the green bismuthinidene (RBi) with two equivalents of a highly fluorinated aryl iodide at low temperature allows the crystallographic identification of an unstable red species that can be regarded as an intermediate in an overall Bi(I) → Bi(III) oxidation process. Both C-I bonds are orientated toward the filled 6p orbital of bismuth (Bi-I distances 3.44-3.52 Å), leading to an elongation of the C-I bonds by 0.05 and 0.07 Å. Density functional theory (DFT) calculations confirm that the Bi(I) center is indeed acting as an electron donor, establishing two strong and directional halogen bonds. The color change from green to red upon halogen bond formation is a consequence of the energetic stabilization of a Bi(I) lone pair by interactions with the sigma-holes of the halogen bond donors. Overall, this study presents the first structural proof of bismuth, and more generally of heavy organopnictogen(I) compounds, acting as halogen bond acceptors.
在低温下,绿色的亚铋烯(RBi)与两当量的高氟化芳基碘发生络合反应,使得一种不稳定的红色物种得以通过晶体学鉴定,该物种可被视为整个Bi(I)→Bi(III)氧化过程中的中间体。两个C-I键均朝向铋的充满电子的6p轨道(Bi-I键长为3.44 - 3.52 Å),导致C-I键伸长了0.05 Å和0.07 Å。密度泛函理论(DFT)计算证实,Bi(I)中心确实作为电子供体,形成了两个强且具有方向性的卤键。形成卤键时颜色从绿色变为红色,是由于Bi(I)孤对电子通过与卤键供体的σ-空穴相互作用而实现能量稳定化的结果。总体而言,本研究首次提供了铋以及更普遍的重有机氮族元素(I)化合物作为卤键受体的结构证据。