International Center for Mathematical Modelling in Physics and Cognitive Sciences, Linnaeus University, Växjö, S-35195, Sweden.
International Center for Mathematical Modelling in Physics and Cognitive Sciences, Linnaeus University, Växjö, S-35195, Sweden.
Biosystems. 2024 Dec;246:105353. doi: 10.1016/j.biosystems.2024.105353. Epub 2024 Oct 18.
The genetic code is a map which gives the correspondence between codons in DNA and amino acids. In the attractor dynamical model (ADM), genetic codes can be described as the sets of the cyclic attractors of discrete dynamical systems - the iterations of functions acting in the ring of 2-adic integers Z. This ring arises from representation of nucleotides by binary vectors and hence codons by triples of binary vectors. We construct a Universal Function B such that the dynamical functions for all known genetic codes can be obtained from B by simple transformations on the set of codon cycles - the "Addition" and "Division" operations. ADM can be employed for study of phylogenetic dynamics of genetic codes. One can speculate that the "common ancestor genetic code" was caused by B. We remark that this function has 24 cyclic attractors which distribution coincides with the distribution for the hypothetical pre-LUCA code. This coupling of the Universal Function with the pre-LUCA code assigns the genetic codes evolution perspective to ADM. All genetic codes are generated from B through the special chains of the "Addition" and "Division" operations. The challenging problem is to assign the biological meaning to these mathematical operations.
遗传密码是一个将 DNA 中的密码子与氨基酸进行对应关系的图谱。在吸引子动力学模型(ADM)中,遗传密码可以被描述为离散动力系统的循环吸引子的集合,即作用在 2-adic 整数环 Z 上的函数的迭代。这个环是由核苷酸的二进制向量表示和密码子的二进制向量三元组表示而来。我们构造了一个通用函数 B,通过对密码子循环集的“加法”和“除法”操作,从 B 可以得到所有已知遗传密码的动力函数。ADM 可以用于研究遗传密码的系统发生动力学。人们可以推测“共同祖先遗传密码”是由 B 引起的。我们注意到,这个函数有 24 个循环吸引子,其分布与假设的前 LUCA 密码子的分布相吻合。这种将通用函数与前 LUCA 密码子的结合,为 ADM 赋予了遗传密码进化的视角。所有的遗传密码都是通过“加法”和“除法”操作的特殊链从 B 中生成的。一个具有挑战性的问题是为这些数学操作赋予生物学意义。