Mei Liye, Lian Chentao, Han Suyang, Jin Shuangtong, He Jing, Dong Lan, Wang Hongzhu, Shen Hui, Lei Cheng, Xiong Bei
School of Computer Science, Hubei University of Technology, Wuhan, China.
The Institute of Technological Sciences, Wuhan University, Wuhan, China.
Microsc Res Tech. 2025 Feb;88(2):489-500. doi: 10.1002/jemt.24704. Epub 2024 Oct 21.
Leukemia is a hematological malignancy that significantly impacts the human immune system. Early detection helps to effectively manage and treat cancer. Although deep learning techniques hold promise for early detection of blood disorders, their effectiveness is often limited by the physical constraints of available datasets and deployed devices. For this investigation, we collect an excellent-quality dataset of 17,826 morphological bone marrow cell images from 85 patients with lymphoproliferative neoplasms. We employ a progressive shrinking approach, which integrates a comprehensive pruning technique across multiple dimensions, including width, depth, resolution, and kernel size, to train our lightweight model. The proposed model achieves rapid identification of acute lymphoblastic leukemia, chronic lymphocytic leukemia, and other bone marrow cell types with an accuracy of 92.51% and a throughput of 111 slides per second, while comprising only 6.4 million parameters. This model significantly contributes to leukemia diagnosis, particularly in the rapid and accurate identification of lymphatic system diseases, and provides potential opportunities to enhance the efficiency and accuracy of medical experts in the diagnosis and treatment of lymphocytic leukemia.
白血病是一种严重影响人体免疫系统的血液系统恶性肿瘤。早期检测有助于有效管理和治疗癌症。尽管深度学习技术有望用于血液疾病的早期检测,但其有效性常常受到可用数据集和已部署设备的物理限制。在本次研究中,我们从85例淋巴增殖性肿瘤患者中收集了一个包含17826张形态学骨髓细胞图像的高质量数据集。我们采用一种渐进式缩减方法,该方法在包括宽度、深度、分辨率和内核大小等多个维度上集成了全面的剪枝技术,以训练我们的轻量级模型。所提出的模型能够快速识别急性淋巴细胞白血病、慢性淋巴细胞白血病和其他骨髓细胞类型,准确率达92.51%,每秒可处理111张玻片,且仅包含640万个参数。该模型对白血病诊断有显著贡献,特别是在快速准确识别淋巴系统疾病方面,并为提高医学专家诊断和治疗淋巴细胞白血病的效率和准确性提供了潜在机会。