Suppr超能文献

解读深度学习在神经科学中的应用:一项文献计量分析

Decoding the application of deep learning in neuroscience: a bibliometric analysis.

作者信息

Li Yin, Zhong Zilong

机构信息

Nanyang Institute of Technology, Nanyang, China.

Beijing Foreign Studies University, Beijing, China.

出版信息

Front Comput Neurosci. 2024 Oct 4;18:1402689. doi: 10.3389/fncom.2024.1402689. eCollection 2024.

Abstract

The application of deep learning in neuroscience holds unprecedented potential for unraveling the complex dynamics of the brain. Our bibliometric analysis, spanning from 2012 to 2023, delves into the integration of deep learning in neuroscience, shedding light on the evolutionary trends and identifying pivotal research hotspots. Through the examination of 421 articles, this study unveils a significant growth in interdisciplinary research, marked by the burgeoning application of deep learning techniques in understanding neural mechanisms and addressing neurological disorders. Central to our findings is the critical role of classification algorithms, models, and neural networks in advancing neuroscience, highlighting their efficacy in interpreting complex neural data, simulating brain functions, and translating theoretical insights into practical diagnostics and therapeutic interventions. Additionally, our analysis delineates a thematic evolution, showcasing a shift from foundational methodologies toward more specialized and nuanced approaches, particularly in areas like EEG analysis and convolutional neural networks. This evolution reflects the field's maturation and its adaptation to technological advancements. The study further emphasizes the importance of interdisciplinary collaborations and the adoption of cutting-edge technologies to foster innovation in decoding the cerebral code. The current study provides a strategic roadmap for future explorations, urging the scientific community toward areas ripe for breakthrough discoveries and practical applications. This analysis not only charts the past and present landscape of deep learning in neuroscience but also illuminates pathways for future research, underscoring the transformative impact of deep learning on our understanding of the brain.

摘要

深度学习在神经科学中的应用为揭示大脑的复杂动态带来了前所未有的潜力。我们从2012年到2023年进行的文献计量分析,深入探讨了深度学习在神经科学中的整合情况,揭示了其发展趋势并确定了关键的研究热点。通过对421篇文章的研究,本研究揭示了跨学科研究的显著增长,其标志是深度学习技术在理解神经机制和解决神经系统疾病方面的蓬勃应用。我们研究结果的核心是分类算法、模型和神经网络在推动神经科学发展中的关键作用,突出了它们在解释复杂神经数据、模拟脑功能以及将理论见解转化为实际诊断和治疗干预措施方面的功效。此外,我们的分析描绘了一个主题演变过程,展示了从基础方法向更专业、更细致入微的方法的转变,特别是在脑电图分析和卷积神经网络等领域。这种演变反映了该领域的成熟及其对技术进步的适应。该研究进一步强调了跨学科合作以及采用前沿技术以促进解码大脑密码方面创新的重要性。当前的研究为未来的探索提供了战略路线图,促使科学界朝着有望取得突破性发现和实际应用的领域前进。这一分析不仅描绘了深度学习在神经科学领域的过去和现状,还为未来的研究指明了方向,强调了深度学习对我们理解大脑的变革性影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfaa/11486706/7faf02d5d023/fncom-18-1402689-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验