Suppr超能文献

地理空间数据库、大脑的空间细胞和深度学习算法中的多种表示形式。

Multiple Representations in geospatial databases, the brain's spatial cells, and deep learning algorithms.

作者信息

Yuan May

机构信息

Geospatial Information Sciences, School of Economic, Political and Policy Sciences, The University of Texas at Dallas, Richardson, TX USA.

出版信息

Cartogr Geogr Inf Sci. 2024;51(5):687-701. doi: 10.1080/15230406.2023.2264758. Epub 2023 Oct 26.

Abstract

Buttenfield (1988) pioneered research on multiple representations in the dawn of GIScience. Her efforts evoked inquiries into fundamental issues arising from the selective abstractions of infinite geographic complexity in spatial databases, cartography and application needs for varied geographic details. These fundamental issues posed ontological challenges (e.g., entity classification) and implementational complications (e.g., duplication and inconsistency) in geographic information systems (GIS). Expanding upon Buttenfield's line of research over the last three decades, this study reviewed multiple representations in spatial databases, spatial cognition, and deep learning. Initially perceived as a hindrance in GIS, multiple representations were found to offer new perspectives to encode and decipher geographic complexity. This paper commenced by acknowledging Buttenfield's pivotal contributions to multiple representations in GIScience. Subsequent discussions synthesized the literature to outline cognitive representations of space in the brain's hippocampal formation and feature representations in deep learning. By cross-referencing related concepts of multiple representations in GIScience, the brain's spatial cells, and machine learning algorithms, this review concluded that multiple representations facilitate learning geography for both humans and machines.

摘要

布滕菲尔德(1988年)在地理信息科学萌芽时期率先开展了关于多重表示的研究。她的努力引发了人们对空间数据库中无限地理复杂性的选择性抽象、制图以及对各种地理细节的应用需求所产生的基本问题的探究。这些基本问题在地理信息系统(GIS)中带来了本体论挑战(如实体分类)和实施复杂性(如重复与不一致)。在过去三十年里,本研究在布滕菲尔德的研究基础上进行拓展,回顾了空间数据库、空间认知和深度学习中的多重表示。多重表示最初在GIS中被视为一种障碍,但后来发现它为编码和解译地理复杂性提供了新的视角。本文开篇就承认了布滕菲尔德对地理信息科学中多重表示的关键贡献。随后的讨论综合了文献,概述了大脑海马体中空间的认知表示以及深度学习中的特征表示。通过交叉引用地理信息科学、大脑空间细胞和机器学习算法中多重表示的相关概念,本综述得出结论:多重表示有助于人类和机器学习地理知识。

相似文献

3
Space-time Integration in GIScience and Geography.地理信息科学与地理学中的时空整合
Ann Assoc Am Geogr. 2013;103(5):1062-1071. doi: 10.1080/00045608.2013.792172.
5
Geographic Information Systems.地理信息系统
Comput Stat. 2009;1(2):167-186. doi: 10.1002/wics.21.
7
Reimagining GIScience for relational spaces.重新构想用于关系空间的地理信息科学。
Can Geogr. 2018 Spring;62(1):7-14. doi: 10.1111/cag.12405. Epub 2017 Sep 18.

本文引用的文献

4
A Comprehensive Survey on Graph Neural Networks.图神经网络综述。
IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):4-24. doi: 10.1109/TNNLS.2020.2978386. Epub 2021 Jan 4.
5
Can Grid Cell Ensembles Represent Multiple Spaces?网格细胞集合能否表示多个空间?
Neural Comput. 2019 Dec;31(12):2324-2347. doi: 10.1162/neco_a_01237. Epub 2019 Oct 15.
6
Allocentric representations of space in the hippocampus.海马体中的空间非自我中心表征。
Neurosci Res. 2020 Apr;153:1-7. doi: 10.1016/j.neures.2019.06.002. Epub 2019 Jul 2.
7
Object-vector coding in the medial entorhinal cortex.内侧嗅皮层中的目标-向量编码。
Nature. 2019 Apr;568(7752):400-404. doi: 10.1038/s41586-019-1077-7. Epub 2019 Apr 3.
9
A Dedicated Population for Reward Coding in the Hippocampus.海马体中用于奖励编码的特定群体。
Neuron. 2018 Jul 11;99(1):179-193.e7. doi: 10.1016/j.neuron.2018.06.008. Epub 2018 Jun 28.
10
Hippocampal Remapping and Its Entorhinal Origin.海马重映射及其内嗅皮层起源。
Front Behav Neurosci. 2018 Jan 4;11:253. doi: 10.3389/fnbeh.2017.00253. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验