Suppr超能文献

肺恶性肿瘤患者微波消融术后气胸或胸腔积液的风险预测模型

Risk prediction model for pneumothorax or pleural effusion after microwave ablation in patients with lung malignancy.

作者信息

Wang Zihang, Liu Yufan, Cao Xiaowen, Liu Miaoyan, Wang Li, Zhong Lou

机构信息

Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China.

Medical School of Nantong University, Nantong University, NanTong, China.

出版信息

Heliyon. 2024 Sep 29;10(19):e38422. doi: 10.1016/j.heliyon.2024.e38422. eCollection 2024 Oct 15.

Abstract

BACKGROUND

Although microwave ablation (MWA) has been shown to be an effective treatment for lung malignancies (LM), there is no effective way to predict pneumothorax or pleural effusion after MWA so that timely measures can be taken to prevent it.

METHODS

This study comprised LM patients undergoing MWA at Affiliated Hospital of Nantong University from January 2013 to September 2023. Patients before May 2023 constituted the training set (n = 340), while data from May to September served as the test set (n = 58). Unformatted and formatted data extracted from electronic medical records (EMR) were utilized for model construction. Predictors for pneumothorax or pleural effusion were determined through univariate analysis and backward stepwise regression in the training set. Six ML algorithms were employed to create four models based on the research timeframe. Evaluation of the four models was performed using receiver operating characteristic (ROC) analysis, area under the ROC curve (AUC), and 10-fold cross validation.

FINDINGS

A total of 398 patients (216 aged 70 or above, 271 males) were included, with 23.37 % (93/398) experiencing pneumothorax and 33.42 % (133/398) developing pleural effusion. Across all four predictive models, Logistic Regression (LR) demonstrated optimal predictive performance in the test set, with AUC values of 0.727 for Model Ⅰ, 0.876 for Model Ⅱ, 0.895 for Model Ⅲ, and 0.807 for Model Ⅳ.

INTERPRETATION

ML models effectively predict post-MWA pneumothorax or pleural effusion.

摘要

背景

尽管微波消融(MWA)已被证明是治疗肺恶性肿瘤(LM)的有效方法,但目前尚无有效的方法来预测MWA术后气胸或胸腔积液,以便及时采取措施进行预防。

方法

本研究纳入了2013年1月至2023年9月在南通大学附属医院接受MWA治疗的LM患者。2023年5月之前的患者构成训练集(n = 340),而5月至9月的数据作为测试集(n = 58)。从电子病历(EMR)中提取的未格式化和格式化数据用于模型构建。通过训练集中的单因素分析和向后逐步回归确定气胸或胸腔积液的预测因素。基于研究时间框架,采用六种机器学习算法创建四个模型。使用受试者工作特征(ROC)分析、ROC曲线下面积(AUC)和十折交叉验证对四个模型进行评估。

结果

共纳入398例患者(年龄70岁及以上者216例,男性271例),其中23.37%(93/398)发生气胸,33.42%(133/398)发生胸腔积液。在所有四个预测模型中,逻辑回归(LR)在测试集中表现出最佳的预测性能,模型Ⅰ的AUC值为0.727,模型Ⅱ为0.876,模型Ⅲ为0.895,模型Ⅳ为0.807。

解读

机器学习模型可有效预测MWA术后气胸或胸腔积液。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f82/11489138/a2a0eff7a2b1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验