Liu Sicen, Wang Xiaolong, Hou Yongshuai, Li Ge, Wang Hui, Xu Hui, Xiang Yang, Tang Buzhou
IEEE J Biomed Health Inform. 2023 Jan;27(1):504-514. doi: 10.1109/JBHI.2022.3217810. Epub 2023 Jan 4.
As two important textual modalities in electronic health records (EHR), both structured data (clinical codes) and unstructured data (clinical narratives) have recently been increasingly applied to the healthcare domain. Most existing EHR-oriented studies, however, either focus on a particular modality or integrate data from different modalities in a straightforward manner, which usually treats structured and unstructured data as two independent sources of information about patient admission and ignore the intrinsic interactions between them. In fact, the two modalities are documented during the same encounter where structured data inform the documentation of unstructured data and vice versa. In this paper, we proposed a Medical Multimodal Pre-trained Language Model, named MedM-PLM, to learn enhanced EHR representations over structured and unstructured data and explore the interaction of two modalities. In MedM-PLM, two Transformer-based neural network components are firstly adopted to learn representative characteristics from each modality. A cross-modal module is then introduced to model their interactions. We pre-trained MedM-PLM on the MIMIC-III dataset and verified the effectiveness of the model on three downstream clinical tasks, i.e., medication recommendation, 30-day readmission prediction and ICD coding. Extensive experiments demonstrate the power of MedM-PLM compared with state-of-the-art methods. Further analyses and visualizations show the robustness of our model, which could potentially provide more comprehensive interpretations for clinical decision-making.
作为电子健康记录(EHR)中的两种重要文本模式,结构化数据(临床代码)和非结构化数据(临床叙述)最近在医疗保健领域的应用越来越广泛。然而,大多数现有的面向EHR的研究要么只关注一种特定模式,要么以一种简单的方式整合来自不同模式的数据,这通常将结构化和非结构化数据视为关于患者入院的两个独立信息源,而忽略了它们之间的内在相互作用。事实上,这两种模式是在同一次就诊过程中记录的,结构化数据为非结构化数据的记录提供信息,反之亦然。在本文中,我们提出了一种医学多模态预训练语言模型,名为MedM-PLM,以学习关于结构化和非结构化数据的增强型EHR表示,并探索两种模式之间的相互作用。在MedM-PLM中,首先采用两个基于Transformer的神经网络组件来从每种模式中学习代表性特征。然后引入一个跨模态模块来对它们的相互作用进行建模。我们在MIMIC-III数据集上对MedM-PLM进行了预训练,并在三个下游临床任务(即用药推荐、30天再入院预测和ICD编码)上验证了该模型的有效性。大量实验证明了MedM-PLM与现有最先进方法相比的强大性能。进一步的分析和可视化展示了我们模型的稳健性,这可能为临床决策提供更全面的解释。