Bellucci Valerio, Birnsteinova Sarlota, Sato Tokushi, Letrun Romain, Koliyadu Jayanath C P, Kim Chan, Giovanetti Gabriele, Deiter Carsten, Samoylova Liubov, Petrov Ilia, Lopez Morillo Luis, Graceffa Rita, Adriano Luigi, Huelsen Helge, Kollmann Heiko, Tran Calliste Thu Nhi, Korytar Dusan, Zaprazny Zdenko, Mazzolari Andrea, Romagnoni Marco, Asimakopoulou Eleni Myrto, Yao Zisheng, Zhang Yuhe, Ulicny Jozef, Meents Alke, Chapman Henry N, Bean Richard, Mancuso Adrian, Villanueva-Perez Pablo, Vagovic Patrik
European XFEL GmbH, Schenefeld, Germany.
SmarAct GmbH, Oldenburg, Germany.
J Synchrotron Radiat. 2024 Nov 1;31(Pt 6):1534-1550. doi: 10.1107/S1600577524008488. Epub 2024 Oct 21.
X-ray multi-projection imaging (XMPI) is an emerging experimental technique for the acquisition of rotation-free, time-resolved, volumetric information on stochastic processes. The technique is developed for high-brilliance light-source facilities, aiming to address known limitations of state-of-the-art imaging methods in the acquisition of 4D sample information, linked to their need for sample rotation. XMPI relies on a beam-splitting scheme, that illuminates a sample from multiple, angularly spaced viewpoints, and employs fast, indirect, X-ray imaging detectors for the collection of the data. This approach enables studies of previously inaccessible phenomena of industrial and societal relevance such as fractures in solids, propagation of shock waves, laser-based 3D printing, or even fast processes in the biological domain. In this work, we discuss in detail the beam-splitting scheme of XMPI. More specifically, we explore the relevant properties of X-ray splitter optics for their use in XMPI schemes, both at synchrotron insertion devices and XFEL facilities. Furthermore, we describe two distinct XMPI schemes, designed to faciliate large samples and complex sample environments. Finally, we present experimental proof of the feasibility of MHz-rate XMPI at the European XFEL. This detailed overview aims to state the challenges and the potential of XMPI and act as a stepping stone for future development of the technique.
X射线多投影成像(XMPI)是一种新兴的实验技术,用于获取关于随机过程的无旋转、时间分辨的体积信息。该技术是为高亮度光源设施开发的,旨在解决现有成像方法在获取4D样本信息方面的已知局限性,这些局限性与样本旋转的需求有关。XMPI依赖于一种光束分离方案,该方案从多个角度间隔的视点照射样本,并使用快速、间接的X射线成像探测器来收集数据。这种方法能够研究以前无法触及的具有工业和社会相关性的现象,如固体中的裂缝、冲击波的传播、基于激光的3D打印,甚至生物领域中的快速过程。在这项工作中,我们详细讨论了XMPI的光束分离方案。更具体地说,我们探讨了X射线分离器光学元件在同步加速器插入装置和X射线自由电子激光(XFEL)设施的XMPI方案中的相关特性。此外,我们描述了两种不同的XMPI方案,旨在方便处理大型样本和复杂的样本环境。最后,我们展示了在欧洲XFEL上实现兆赫兹速率XMPI可行性的实验证据。这一详细概述旨在阐述XMPI的挑战和潜力,并为该技术的未来发展奠定基础。