Panasci Salvatore Ethan, Schilirò Emanuela, Greco Giuseppe, Cannas Marco, Gelardi Franco M, Agnello Simonpietro, Roccaforte Fabrizio, Giannazzo Filippo
CNR-IMM, Strada VIII, 5 95121, Catania, Italy.
Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy.
ACS Appl Mater Interfaces. 2021 Jul 7;13(26):31248-31259. doi: 10.1021/acsami.1c05185. Epub 2021 Jun 24.
Gold-assisted mechanical exfoliation currently represents a promising method to separate ultralarge (centimeter scale) transition metal dichalcogenide (TMD) monolayers (1L) with excellent electronic and optical properties from the parent van der Waals (vdW) crystals. The strong interaction between Au and chalcogen atoms is key to achieving this nearly perfect 1L exfoliation yield. On the other hand, it may significantly affect the doping and strain of 1L TMDs in contact with Au. In this paper, we systematically investigated the morphology, strain, doping, and electrical properties of large area 1L MoS exfoliated on ultraflat Au films (0.16-0.21 nm roughness) and finally transferred to an insulating AlO substrate. Raman mapping and correlative analysis of the E' and A' peak positions revealed a moderate tensile strain (ε ≈ 0.2%) and p-type doping ( ≈ -0.25 × 10 cm) of 1L MoS in contact with Au. Nanoscale resolution current mapping and current-voltage (-) measurements by conductive atomic force microscopy (C-AFM) showed direct tunneling across the 1L MoS on Au, with a broad distribution of tunneling barrier values (Φ from 0.7 to 1.7 eV) consistent with p-type doping of MoS. After the final transfer of 1L MoS on AlO/Si, the strain was converted to compressive strain (ε ≈ -0.25%). Furthermore, an n-type doping ( ≈ 0.5 × 10 cm) was deduced by Raman mapping and confirmed by electrical measurements of an AlO/Si back-gated 1L MoS transistor. These results provide a deeper understanding of the Au-assisted exfoliation mechanism and can contribute to its widespread application for the realization of novel devices and artificial vdW heterostructures.
金辅助机械剥离法目前是一种很有前景的方法,可从母体范德华(vdW)晶体中分离出具有优异电子和光学性能的超大尺寸(厘米级)过渡金属二硫属化物(TMD)单层(1L)。金与硫属原子之间的强相互作用是实现近乎完美的1L剥离产率的关键。另一方面,它可能会显著影响与金接触的1L TMD的掺杂和应变。在本文中,我们系统地研究了大面积1L MoS在超平坦金膜(粗糙度为0.16 - 0.21 nm)上剥离并最终转移到绝缘AlO衬底后的形貌、应变、掺杂和电学性质。拉曼映射以及对E'和A'峰位置的相关分析揭示了与金接触的1L MoS存在适度的拉伸应变(ε≈0.2%)和p型掺杂(≈ - 0.25×10 cm)。通过导电原子力显微镜(C - AFM)进行的纳米级分辨率电流映射和电流 - 电压( - )测量表明,电流直接隧穿穿过金上的1L MoS,隧穿势垒值(Φ从0.7到1.7 eV)分布较宽,这与MoS的p型掺杂一致。在将1L MoS最终转移到AlO/Si上之后,应变转变为压缩应变(ε≈ - 0.25%)。此外,通过拉曼映射推断出n型掺杂(≈0.5×10 cm),并通过AlO/Si背栅1L MoS晶体管的电学测量得到证实。这些结果有助于更深入地理解金辅助剥离机制,并有助于其在实现新型器件和人工vdW异质结构方面的广泛应用。