INSERM, U1099, Rennes, France.
Université de Rennes 1, LTSI, Rennes, France.
PLoS One. 2021 May 19;16(5):e0250890. doi: 10.1371/journal.pone.0250890. eCollection 2021.
Effective and timely disease surveillance systems have the potential to help public health officials design interventions to mitigate the effects of disease outbreaks. Currently, healthcare-based disease monitoring systems in France offer influenza activity information that lags real-time by one to three weeks. This temporal data gap introduces uncertainty that prevents public health officials from having a timely perspective on the population-level disease activity. Here, we present a machine-learning modeling approach that produces real-time estimates and short-term forecasts of influenza activity for the twelve continental regions of France by leveraging multiple disparate data sources that include, Google search activity, real-time and local weather information, flu-related Twitter micro-blogs, electronic health records data, and historical disease activity synchronicities across regions. Our results show that all data sources contribute to improving influenza surveillance and that machine-learning ensembles that combine all data sources lead to accurate and timely predictions.
有效的、及时的疾病监测系统有潜力帮助公共卫生官员设计干预措施,以减轻疾病爆发的影响。目前,法国基于医疗保健的疾病监测系统提供的流感活动信息实时滞后一到三周。这种时间数据差距引入了不确定性,使公共卫生官员无法及时了解人群层面的疾病活动情况。在这里,我们提出了一种机器学习建模方法,通过利用多个不同的数据源,包括谷歌搜索活动、实时和本地天气信息、与流感相关的 Twitter 微博、电子健康记录数据以及跨地区的历史疾病活动同步性,为法国的十二个大陆地区实时估计和短期预测流感活动。我们的结果表明,所有数据源都有助于改善流感监测,并且结合所有数据源的机器学习集成可以实现准确和及时的预测。