Suppr超能文献

用于多类乳腺癌图像分割的深度多重放大网络。

Deep Multi-Magnification Networks for multi-class breast cancer image segmentation.

机构信息

Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA.

Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA.

出版信息

Comput Med Imaging Graph. 2021 Mar;88:101866. doi: 10.1016/j.compmedimag.2021.101866. Epub 2021 Jan 12.

Abstract

Pathologic analysis of surgical excision specimens for breast carcinoma is important to evaluate the completeness of surgical excision and has implications for future treatment. This analysis is performed manually by pathologists reviewing histologic slides prepared from formalin-fixed tissue. In this paper, we present Deep Multi-Magnification Network trained by partial annotation for automated multi-class tissue segmentation by a set of patches from multiple magnifications in digitized whole slide images. Our proposed architecture with multi-encoder, multi-decoder, and multi-concatenation outperforms other single and multi-magnification-based architectures by achieving the highest mean intersection-over-union, and can be used to facilitate pathologists' assessments of breast cancer.

摘要

乳腺癌外科切除标本的病理分析对于评估手术切除的完整性非常重要,并且对未来的治疗有影响。这种分析是由病理学家手动进行的,他们查看从福尔马林固定组织制备的组织学幻灯片。在本文中,我们提出了一种由部分注释训练的深度多放大网络,用于通过数字化全切片图像中来自多个放大倍数的一组斑块自动进行多类组织分割。我们提出的具有多编码器、多解码器和多连接的体系结构优于其他基于单和多放大倍数的体系结构,实现了最高的平均交并比,可用于辅助病理学家评估乳腺癌。

相似文献

1
Deep Multi-Magnification Networks for multi-class breast cancer image segmentation.用于多类乳腺癌图像分割的深度多重放大网络。
Comput Med Imaging Graph. 2021 Mar;88:101866. doi: 10.1016/j.compmedimag.2021.101866. Epub 2021 Jan 12.
10
Automated Molecular Subtyping of Breast Carcinoma Using Deep Learning Techniques.基于深度学习技术的乳腺癌自动分子分型。
IEEE J Transl Eng Health Med. 2023 Feb 6;11:161-169. doi: 10.1109/JTEHM.2023.3241613. eCollection 2023.

引用本文的文献

7
Invasive carcinoma segmentation in whole slide images using MS-ResMTUNet.使用MS-ResMTUNet对全切片图像中的浸润性癌进行分割。
Heliyon. 2024 Feb 19;10(4):e26413. doi: 10.1016/j.heliyon.2024.e26413. eCollection 2024 Feb 29.

本文引用的文献

2
Breast cancer statistics, 2019.乳腺癌统计数据,2019 年。
CA Cancer J Clin. 2019 Nov;69(6):438-451. doi: 10.3322/caac.21583. Epub 2019 Oct 2.
10
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验