Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.
Laboratorio de Biomecánica Clínica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Carrera de Kinesiología, Santiago, Chile.
Cerebellum. 2024 Dec;23(6):2487-2496. doi: 10.1007/s12311-024-01748-0. Epub 2024 Oct 22.
Motor adaptation is critical to update motor tasks in new or modified environmental conditions. While the cerebellum supports error-based adaptations, its neural implementation is partially known. By controlling the frequency of cerebellar transcranial alternating current stimulation (c-tACS), we can test the influence of neural oscillation from the cerebellum for motor adaptation. Two independent experiments were conducted. In Experiment 1, 16 participants received four c-tACS protocols (45 Hz, 50 Hz, 55 Hz, and sham) on four different days while they practiced a visuomotor adaptation task (30 degrees CCW) with variable intensity (within-subject design). In Experiment 2, 45 participants separated into three groups received the effect of 45 Hz, 55 Hz c-tACS, and sham, respectively (between-subject design), performing the same visuomotor task with a fixed intensity (0.9 mA). In Experiment 1, 45 Hz and 50 Hz of c-tACS accelerated motor adaptation when participants performed the task only for the first time, independent of the time interval between sessions or the stimulation intensity. The effect of active c-tACS was ratified in Experiment 2, where 45 Hz c-tACS benefits motor adaptation during the complete practice period. Reaction time, velocity, or duration of reaching are not affected by c-tACS. Cerebellar alternating current stimulation is an effective strategy to potentiate visuomotor adaptations. Frequency-dependent effects on the gamma band, especially for 45 Hz c-tACS, ratify the oscillatory profile of cerebellar processes behind the motor adaptation. This can be exploited in future interventions to enhance motor learning.
运动适应对于在新的或修改后的环境条件下更新运动任务至关重要。虽然小脑支持基于错误的适应,但它的神经实现部分是已知的。通过控制小脑经颅交流电刺激(c-tACS)的频率,我们可以测试小脑神经振荡对运动适应的影响。进行了两项独立的实验。在实验 1 中,16 名参与者在四天内接受了四种 c-tACS 方案(45 Hz、50 Hz、55 Hz 和假刺激),同时进行了具有不同强度的视觉运动适应任务(30 度逆时针)(个体内设计)。在实验 2 中,45 名参与者分为三组,分别接受 45 Hz、55 Hz c-tACS 和假刺激的影响(组间设计),执行相同的视觉运动任务,但强度固定(0.9 mA)。在实验 1 中,当参与者仅首次执行任务时,45 Hz 和 50 Hz 的 c-tACS 加速了运动适应,与会话之间的时间间隔或刺激强度无关。在实验 2 中,c-tACS 的积极作用得到了验证,其中 45 Hz c-tACS 在整个练习期间有益于运动适应。c-tACS 不会影响反应时间、速度或到达的持续时间。小脑交流电刺激是增强视觉运动适应的有效策略。对伽马波段的频率依赖性影响,特别是对 45 Hz c-tACS 的影响,验证了小脑运动适应背后的神经振荡模式。这可以在未来的干预措施中得到利用,以增强运动学习。