Naro Antonino, Bramanti Alessia, Leo Antonino, Manuli Alfredo, Sciarrone Francesca, Russo Margherita, Bramanti Placido, Calabrò Rocco Salvatore
IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy.
Brain Struct Funct. 2017 Aug;222(6):2891-2906. doi: 10.1007/s00429-016-1355-1. Epub 2017 Jan 7.
The cerebellum regulates several motor functions through two main mechanisms, the cerebellum-brain inhibition (CBI) and the motor surround inhibition (MSI). Although the exact cerebellar structures and functions involved in such processes are partially known, Purkinje cells (PC) and their surrounding interneuronal networks may play a pivotal role concerning CBI and MSI. Cerebellar transcranial alternating current stimulation (tACS) has been proven to shape specific cerebellar components in a feasible, safe, effective, and non-invasive manner. The aim of our study was to characterize the cerebellar structures and functions subtending CBI and MSI using a tACS approach. Fifteen healthy individuals underwent a cerebellar tACS protocol at 10, 50, and 300 Hz, or a sham-tACS over the right cerebellar hemisphere. We measured the tACS aftereffects on motor-evoked potential (MEP) amplitude, CBI induced by tACS (tiCBI) at different frequencies, MSI, and hand motor task performance. None of the participants had any side effect related to tACS. After 50-Hz tACS, we observed a clear tiCBI-50Hz weakening (about +30%, p < 0.001) paralleled by a MEP amplitude increase (about +30%, p = 0.001) and a reduction of the time required to complete some motor task (about -20%, p = 0.01), lasting up to 30 min. The 300-Hz tACS induced a selective, specific tiCBI-300Hz and tiCBI-50Hz modulation in surrounding muscles (about -15%, p = 0.01) and MSI potentiation (about +40%, p < 0.001). The 10-Hz tACS and the sham-tACS were ineffective (p > 0.6). Our preliminary data suggest that PC may represent the last mediator of tiCBI and that the surrounding interneuronal network may have an important role in updating MSI, tiCBI, and M1 excitability during tonic muscle contraction, by acting onto the PC. The knowledge of these neurophysiological issues offers new cues to design innovative, non-invasive neuromodulation protocols to shape cerebellar-cerebral functions.
小脑通过两种主要机制调节多种运动功能,即小脑-脑抑制(CBI)和运动周围抑制(MSI)。尽管参与这些过程的确切小脑结构和功能部分已知,但浦肯野细胞(PC)及其周围的中间神经元网络可能在CBI和MSI中起关键作用。经颅交流电刺激(tACS)已被证明可以以可行、安全、有效且无创的方式塑造特定的小脑成分。我们研究的目的是使用tACS方法来表征支撑CBI和MSI的小脑结构和功能。15名健康个体在右小脑半球接受了10Hz、50Hz和300Hz的小脑tACS方案,或假tACS。我们测量了tACS对运动诱发电位(MEP)幅度、不同频率下tACS诱导的CBI(tiCBI)、MSI和手部运动任务表现的后效应。没有参与者出现与tACS相关的任何副作用。在50Hz tACS后,我们观察到tiCBI-50Hz明显减弱(约+30%,p<0.001),同时MEP幅度增加(约+30%,p=0.001),完成一些运动任务所需时间减少(约-20%,p=0.01),持续长达30分钟。300Hz tACS在周围肌肉中诱导了选择性、特异性的tiCBI-300Hz和tiCBI-50Hz调制(约-15%,p=0.01)以及MSI增强(约+40%,p<0.001)。10Hz tACS和假tACS无效(p>0.6)。我们的初步数据表明,PC可能是tiCBI的最后介导者,并且周围的中间神经元网络可能通过作用于PC在紧张性肌肉收缩期间更新MSI、tiCBI和M1兴奋性方面发挥重要作用。对这些神经生理学问题的了解为设计创新的、无创的神经调节方案以塑造小脑-大脑功能提供了新线索。